A GENERALIZATION OF THE ARITHMETIC-GEO-
METRIC MEAN INEQUALITY AND AN APPLICA-
TION TO FINITE SEQUENCES OF ZEROS AND
ONES

BY
FRANZ HERING*

ABSTRACT

We generalize the arithmetic-geometric mean inequality to a new class of
polynomials and give a combinatorial application.

Introduction

The elementary symmetric polynomial S,(x;, -+, x,,) of degree r has the following
property: When x = (x4, -+, %,) 2 0 and % = (x; +- + x,,)/m, then S/(x,,--,x,,)
£ S8,(%,:--,%). For r=m this is just the arithmetic-geometric mean inequality
for S,(x1, s Xpm) = Xg =" X S (X1 + +++ + %) /M)" = S(X, -+, X). The generaliza-
tion to an arbitrary r is due to Mac-Laurin [1]. We prove here a similar inequality
for another class of polynomials which occur in a problem of sequences of zeros

and ones.

1. The inequality

M denotes always the set of integers 1,---,m and 2™ its powerset.

DEFINITION 1.1. When I = {i;,--,i,} € 2" such that i < --- < i, holds, then I
is alternating, iff i, even is equivalent to i,,, odd for v=1,.--,r — 1. Then
1.1 W= {Ie2™: I =r, I alternating}.
1.2) AX (X)) = X {H x:1le ‘ZI,,,,,}

iel
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is the alternating polynomial of degree r in m variables. For example

1 2 3
1 2 5
1 2 7
1 4 5
1 4
1 6
A : 4 5
4 7
6 7
5 6 17
2 4
2 6
2 56
4 56

(The digits of each line are an element of U, ;).
Let B, , denote the maximum of A,(x;,"*,x,) on the simplex

(1.3) S={(xp,x)eR™: x,20fori=1,.--,m, Ex;=1}.

Then we prove the following

THEOREM 1.1. (i) When r £ 4, then

1 1 ’
A’(m PR 1,0) for r £ m(2)

(ii) When r=3 or r=4 and r =m(2), then B, is attained uniquely at
(1/m,+-,1|m) on S. When r £ m(2), r€{2,3,4}, then ,,, =B, ,._, and Brm is
not attained at (1/m,--+,1[m).

Whether the condition r £4 may be dropped remains open. When r = m,
then (1.4) is also true, it is then equivalent to the arithmetic-geometric mean
inequality. We prepare the proof be several lemmas, some of them dealing mainly
with combinatorial properties of 2, .

The cyclic permutation T of M is defined by
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{i + 1 for i<m,
(1.5) () = 1 for i =m.

In general, when f is a mapping from a set 4 into a set B, then f develops
canonically to a mapping from 24 into 2% and we use the same letter for this
mapping. So we have for I = M

T ={T(@):iel}
and for A = 2M
T(W={TI):I1e A}.

Lemma 1.1. T(U,,) = U, iff r = m(2).

Proof. Suppose I = {iy, ,i,} € U,,, with i; <+ <i,, s0 i, + i, = 1(2) for
v=1,--,r—1. We have trivially T(,)+ T(i,.)=1i,+i,,, +2=1Q2) for
v=1,-,r—2and if i, < m, then also for v =r — 1, proving T(I)e U, , in this
case. When i, = m, then T()e U, , iff T(m) + T(i;) = 1(2). Now T(m) + T(i,)
=i, + 2=1i,(2)and i = 1(2)iffi, = r(2). This shows T( U, ,) = U, ,iff r = m(2).
From T being one-to-one on the finite set 2 we obtain T W)= O

To N = M, R 2¥ we define

RIN] = IeR:INN=g}
NN =(UcM:UNN=g, U UNeR}.
When N = {n}, we write R[n], N<n) instead of N[{n}], N{n}>.

Then

(1.6) N=N[n] o {UU{{n}:UeRn)}.

(Here (» means: union of disjoint sets).
The following lemma is plain:

LemmaA 1.2
TRIND = (TEY[TMV)],
TNY) = (TAN)T(N)).
PROOF. TR[N]) = T{IeR: I NN =g}

= (JeT@):T™'(J)NN = &}
= {JeT):J NT(N) = &}
= (T [TW)].
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The second equation follows analogously. [J]
We have from Definition 1.1

(1.8) {er.m[m] = SJIr,m-~1
{T_I(I): I Eurm[l]} = QIr,m—l
and we want to obtain a similar result when n# 1, m in U, [n].

DEFINITION 1.2. When m > 2, we define a mapping ¢, of M onto M\ {m,m—1}
for every neM:

1 forj=1,m
6)) ={
! j—1 forj=2,3,m—1
m—2forj=1,m
oul) = { _
j—1 forj=2,--m—1
j forj=1,---,n—1
o) =

Tz—lforj=n (n=2,---,m—1).
j—2 forj=n+1,--,m
LemMa 1.3, Whenm=r(2)or 1 <n <m then

o Wy 1)) = Up ez

Proor. We first assume 1 <n < m. Suppose € U, ,[nl

We observe that $¢,(I) = r: Now ¢,(a) # ¢,(b) for a# b, iff {a,b} & {n — 1,
n,n + 1}. By hypothesis, n ¢ I, so in order to show that #¢,(I) = r, it suffices to
show that {n — 1,n + 1} & I. Butif n — 1, n + 1 were in I they would be successive
elements with (n — 1) + (n + 1) = 0(2) contradicting that I is alternating.

When u € M\ {n}, then either ¢,(u) =u or ¢,(u) =u—2. Therefore, when u,
ve M\{n}, then u+v=¢,u)+ ¢,(v) (2). This proves @) e U, ,_, and
therefore ¢ (U, [n]) = Wpm—2-

To prove the reverse inclusion, we define a mapping ¥, from M\ {m — 1,m}
onto M\{n,n + 1} by

j forj<n
vali) = {j+2forjgn
When Je U,,.-,, then obviously ¢, (J))e U..[n] and ¢, (J)=J. So
O Ul 1) = Uy
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Now we assume m = r(2) and n = 1. We have ¢, 0 T~ ! = ¢,, s0

¢1( §2Ir,m[]‘])

G W[ m]) = U, ,.—, follows analogously. (]

(T (L T D

¢1(T—1( g2Ir,m[2’]))
¢2( gzIhm[z])

QIr»m—2'

(Lemma 1.1)
(Lemma 1.2)

The following example gives U ,[2] and ¢,( A5 ,[2]) :

Uz 7[2] ¢2(Us2[2D)
1 45 123
1 4 7 1 2 5
1 6 7 1 45
345 123
3 4 7 12 5
3 6 7 1 45
567 345
4 56 2 3 4

To every element of W, ,[2] its image under ¢, is in the same line. Observe that

¢, is not one-to-one.

LEmMMA 1.4, When 1 <n < m then
(U = 13) [n] = (A + 1) [n].

Proor. When Ue(¥,,(n—1>) [n], then n—1, n¢U and U u{n—1}
€ U, .. Therefore n + 1€ U is impossible, for otherwise n — 1 and n + 1 would
be subsequent elements of U U {n — 1} and (n — 1) + (n 4 1) = 0(2). This is a
contradiction to U u{n—1}e %, ,. From n+1¢U we obtain U u{n + 1}
e U, ,, tooie Ue(U,,{(n+1>) [n]. The inverse relation follows analogously.[]

Example:
913.7<1> QI3.7(3> (%3,7<1>) [2] = ( sZI3,7<3>)[2]
23 1 2 4 5
2 5 4 5 4 7
2 7 4 6 7

4 5

4 7 2 4

6 71 2
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COROLLARY. When m 2 3 and r = m(2), then
(L.7) (%, LT 1m)))[n] = (N,,. T(n)>) [n] for every ne M.

Only the cases n = 1 and n = m are not covered by the previous lemma.

PROOF. (U, LT™Yn)>)[n]

= (T2 W, DT~ 1(n))) [n] (Lemma 1.1)
= (T XU N<T 2 [T3(2)] (1.5)
= (T"" (U, [T 2] (Lemma 1.2)
= T"2((W,..<1) [2D (Lemma 1.2)
= T" (U3 2D (Lemma 1.4)
= (T4 U,..35) [T%2)] (Lemma 1.2)
= (T (W )T*GM [T"72(2)]  (Lemma 1.2)
= (T (L)) <T(m)>) [n] (L.5)
= (A,,.LT(n))) [n]. (Lemma 1.1) [J

The condition r = m(2) in the corollary is necessary. For example
(Us,e<ON 1] = {{2,3},{2,5},{4.5}}
# (Us 2N[1] = {{3,4},{3,6},{5,6}}.
The following lemma is obtained analogously to Lemma 1.4 but a little more
complicated.
LeMMA 1.5, Whenm=4,r=2and 1 £n<m-3, then
W, {pn+ 3N [n+ 2] =(W,.,.{n+2,n+3}) [n + 1]
Proor. Suppose Ve( U, . ({n,n+1}>) [n+2] Then {n,n+1,n+2} NV
=@ and Vyuinn+1te U,,,.
The assumption n + 3 eV gives us again (as in the proof of Lemma 1.4) a

contradiction to V u{n,n+1}e U, ,. Therefore V u{n+2,n+3}e U, ,,
showing V e(¥,,.{{n +2,n + 3}>) [n + 1]. The inverse relation needs no new

argument. []
The following corollary follows by a similar calculation as the corollary to

Lemma 1.4.

COROLLARY. When m = 4, r = 2, m = r(2) then we have



20 F. HERING Israel J. Math.,
(1.8) (Ui, TMP) [TH)] = (U, W{{T?(m), T3(m)}>) [T(m)].
for every neM. [
When I < M, then min [ is the smallest element of I. Then we define
=% Wy s
(1.9) by =% {Ie N, ,:minl=1Q2)},
¢m=#¥{Ie U, ,:minI=02)}.
LEMMA 1.6. ¢, ,, = b, -y for m> 1.
Proor. T 1({Ie U,,,:min I =02)})={Je A,,,,—: min I = 1(2)}, therefore
Com = # (T"W{Ie N,,,,: min I =0(2)}))
=4 ({Je U, ,—,:minI =1Q2)})
= b, .00
LemMA 1.7. byp=bep2+ b,y for2<r<m-—2
PROOF. b,, = % {Ie A, minl =1}
# {Ie U, ,:minl 23, minI = 1(2)}
#$ {(VeM:1¢V,Vu{l}e U}
+ # T *{Ie ¥,,,: minl 3, minl = 1(2)})
# {Ve U._,., mnV=002)}
+ # {Je A,,,—,:min J =1(2)}.

+

il

= cr—lam + br;m—2

= br_ym—1+ b pm2- (Lemma 1.6) J

m—[%(m—r+1)]) m — [3(m —r + 2)]
+ ).

LemmA 1.8. Arm =( .

r
(4s usual (Z) = 0 for u < v and [x] denotes the greatest integer less than or
equal to x).

Proor. We show by induction:

(1.10) bym = (m T 1)]).

r

(1.10) holds for r =1, r=m — 1, r = m. Using Lemma 1.7 and the induction
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hypothesis we obtain (1.10) and the lemma follows then from (1.10), Lemma 1.6
and a,,=b, , + ¢, p. [J

COROLLARY.

A,(%,---,;nl—)= ;l, [(m—[%(m—r+1)]) . (m—[%(m—r+2)])].

r r

(1+1/n)‘<1+s/n

<s<
1—1/n 1—s/n for2sssm.

Proor. When s = 1, equality holds. Now suppose s > 1 and we have
s—1 s—1

(et s

by induction hypothesis. Then

s

it Iy R
1+1/n n n
<

1-1/n| = (l_s;1)

= < . O
QLA St R
n n? n
Define
1 1
(1.11) C,(m) = Ar(ﬁ" . 7n_),
—

LemMMA 1.10. When 2 <r<m, m=r(2), then C(m) < C/(m +2).

ProoF. We have from r = m(2), the corollary to Lemma 1.8 and (1.11)

Clm) =— [(%('”r* r)) + (%('" tre? )]

A straightforward but somewhat tedious calculation gives

r—2

1 m+r m—r+2
Celm +2) = Cm) = ey 11 (m+7=20) {(m+2)"‘ T T T }
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So all we have to show, that {---} is positive. This follows from Lemma 1.9 with
n=m+lands=r—1.

We are now prepared to prove our theorem. However for a later application
we first state the following

LemMMmA 1.11. When2<r<m, m=r(2), then

A(1,-+,1,2). O
—

—
m+1

We omit the proof, which is a straightforward but tedious calculation.

ProOF OF THE THEOREM. When U <2 x € R™ we define the polynomial
P(, ) by
(1.12) P(Ax)=X {H x;:1e ‘21}
iel
(As usual the product over the empty index set is 1). When U =B ¢, then
P(U,x) = P(B,x) + P(E,x). Therefore by (1.6)

P(U,x) = P(U[i], x) + x;,P( A, x).

For the alternating polynomial we obtain A,(x,*,X,) = P(U, ,X).

When r = 1, then our theorem is trivial, for P(%,,,,x) =1 on S. When r =2,
then

Az(xl,---,xm)=( z xi) ( z x,-)

i=0(2) j=1(2)

and this product is maximal on S iff

(1.13) 2 x= X x,

i=0(2) J=12)
So x; =+ =x,, =1/m is a solution of (1.13) iff m = 0(2). When r £ m(2), then
(1/(m—1),---,1)(m—1),0) is a boundary point of S which solves (1.13). Therefore

1 1 1 1
A2 (_"", _‘) <ﬁ2m = AZ( — 1’ 0)

m’ ’m m m -1
L_W__J — v —/
m m
1 1
= Az(m _ 1,.-., m_l) =ﬁ2,m_1.
C v J
m—1

This proves the case r = 2 of our theorem.

Now suppose r = 3. We build the Lagrange-function



Vol. 11, 1972 ARITHMETIC-GEOMETRIC MEAN INEQUALITY 23
(1.14) E(x,4) = P(X, p %) + A1 — <, x).

(Here (e, x) is the scalar product of e =(1,---,1) and x).
Using (1.6) we have

7}'36:3—‘1—1‘)( QInma x) = P( QI,-.m<n —_ ]_>’ X)
= P((W, .<n — 1)) [1], %) + x,P(A,...{{n — 1,1}, %),
axf+1 P( SlIr.m’x) = P( Q[,,m<n + 1>’ X)

= P((U, w<n + 1) [n],%) + 3, P(W, ,{{n + 1,1}, X).
For a stationary point (x},--,x% 1*) of L we obtain

2

(1.15) =

P(U, .,x*)=A*forallne M.

The combinatorial preparations serve now to handle the equations (1.15). When
1 <n < mwe get from Lemma 1.4

xn*P( mr,m({n - l’n}>9x*) = xn*P( QI1',m<{n + I:n}>’x*)'

When x* is an interior point of S, we have x, >0. So we obtain for every n with
1Sn<m

(1.16) P(, ,<{1,2},x*) = P(W,,.{n,n + 1}, x*).
We have from (1.6) for 2 <n < m — 2 again
P(U, .{{n—1,n}),x*%)

= P(U, {<n— L,n})) [0 + 1], x*) + %34 . P(W, {1 — L,n,n + 1}),x*),
P(A,,,<{n+1Ln+2}>,x*)

=P(U,,{n + 1L,n +2}D)[n], x*) + xF P(A, .{{n,n+ 1,n + 2}>,x%).
This gives us together with (1.16) and Lemma 1.5

(1'17) X:P( 62Ir.m<{nan + 1," + 2}>’x*) = x:+1P( ‘Hnm <{n - 1: n,n + 1}>9x*) '

Now we assume r = 3. Then U; . {{n, T(n), T*(n)}>= for every ne M, so
P(U, . {n, T(n), T*(n)}») = 1. From (1.17) therefore it follows x5 =---=x%_,.
When m odd, then (1.8) gives us xf =x3 = =x}_, =x¥=1/m.

Returning to the general case we obtain from (1.17) for r=3,2<n<m -3
with n + 1 instead of n
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* *
(1.18) xn+1P(QIhm<{n+1,n+2’n+3}>,x )
= xp s P(W,.{{n, n + 1,n + 2}),x%).
It follows from (1.17) and (1.18)
x:+2xnzlp( 621t‘,m<{n - 1a n,n -+ 1}>a x*) = x:+2x:P( QInm<{n’ n+ 1," + 2}>a x*)
= X0 %5% 1 P(Wy ol {n + Ln + 2,n + 3}),x*).
Therefore, when x* is an interior point of S we obtain

(1.19) X3 P(W, i ~ Lnon + 13, x*¥) = xFP(U, {n+1,n+2,n+3}),x%).
Now suppose r = 4. Then
Wy w{n=1,n,n+1})y={ieM:i=n(2), i #n}.
Therefore (1.19) becomes

Xho Z{xFi=n(2),i#n} =xFX{x}i=n(2), i#n+2} or equivalently
(onez = x) Cevaz +x0) = (oy — x342) (Z{xfi=nQ2), i#n,n+2}).

So, when x,, #% x¥, then at least one x} i = n(2) must be negative. Therefore
we have reached the conclusion that x} = x.*,, or more general x; = x*when
2=<i,j<m—1 and when i,j are both even or both odd. Now suppose m even.
Then r = m(2) and so (1.8) gives us xf = x¥ and x*_, = x%, too. With a = x},
b = x% we have x* = (a,b,a,--,b) where a + b =2 /m.

In general, when r is even, then # {iel:iodd} = # {iel:ieven} for every
Ie ¥, ,. Therefore we have

r/2 r/2 \2
H x;l:=ar/2_br/2 < (a ;‘b )

iel

with equality iff a = b = 1/m.

We put the results together:

Suppose r = 3 and m odd.When (x*, 4*) is a stationary point of the Lagrange-
function L and x* is an interior point of S, then x* = (1/m,---,1/m).

Suppose r =4, m even and (x¥,x%, -, x%_,,x% 1%) = (x*,4*) is a stationary
point of L with x* in the interior of S. Then x¥=x}=--=x¥_,, x3=x}
= ... = x}. Furthermore, when y is a point of the interior of S of the form
y=(a,b,---,a,b) with a 1/m, then A(y) < A(1/m,---,1/m).

Now we prove that in these cases (i.e. for r = 3,4, r = m(2))

Ar(ul""’um) < Ar(l /m""sllm)



Vol. 11, 1972 ARITHMETIC-GEOMETRIC MEAN INEQUALITY 25

holds when u = (u,,+-,u,,) is a boundary point of S. We apply induction on
m —r. Indeed, when m = r, this inequality is just the arithmetic-geometric

mean inequality for r = m = 3,4. Now suppose m —r > 0. To every jeM we
define a mapping f; of R™ into R™~2 using definition 1.2 as follows: To
Xx=(Xy, %) €R", ke {l,2,---,m}
we define
ye = Z{x,ipeM, ¢{p)=k}

and fi(x) = (yy,**, Ym-2)- So for example

J3(x) = (x15%3 + X3+ X4 X5, 5 Xpy—2)-
Now suppose u = (1, -, 4;_4, 0, t4;,4,-+,4,,) €S is a boundary point of S, so
Afu)=P(U, ,[j],u) and also suppose that I € U, [j] and v = (v, ,0p-2)
=fi(w).

When ¢ and d are different elements of M \{j} with ¢(c) = ¢,(d), then {c,d}
= {T~Y(j), T(j)}. We have {T~1(j), T(j)} & I for every Ie U, ,[j], for TTI(}),
T(j)would be subsequent elements of I of the same parity. Therefore ¢; is one-
to-one on every I'e U, [, hence v, ,,, = u, for every peI and so trivially

Il u= 1] v
pel ke (D)

We define a mapping g on {Ie W, [j]: T~Yj)el} by g() =(I\{T "))
U {T(j)}. Then g(De U, [],tooand gmaps {Ie U, ,[j]: T~ Xj)el} one-to-one
onto {Ke U,,[i]: T(j) e K}. This gives us

IT u, + T ty=Cur-ry+urgy) [[{wtel, t=T 1G5} = ] ve

pel seg(d) ke é;(I)

So finally using Lemma 1.3 we obtain

PO, [7]8) = 2{ T vele ‘21,,,,,[]‘]}

ked (I

z{n b Ke by %,,m[j])}

keK

2 {H vk:Ke erm—Z}

k=K

= P( %r,m—z,v) = Ar,m—Z(vl’ ""vm—Z)'

Trivially v; + +++ + 0,,_, =1, 1,20 for i = 1,---,m — 2. Therefore the induction
hypothesis leads to

1 1
Ay o o(01s s Om) < A,(

m—2 "m-=2

) =Cym —2).
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From Lemma 1.10 we have therefore
A, (ug, - u,) < C(m —2) < C,(m) for every point on the boundary of S.
Therefore B, ,, is not attained at the boundary of S and is consequently attained
at interior points x* of S only, for which (x*, A*) is a stationary point of L. This
proves our theorem in the case r = m(2).
Now suppose r £ m(2), r=3 or r =4 and (x4,-'+,x,,)€S. Then

A(xyy X)) = A%, 3 X 0) = P( W, n 415 (X155 X, 0))
= P(Wpmi1[m + 1], g, o5 X, 0)) = P( Wy 1St 1(X 157+ X1y 0))
= P(W,, (X1 F Xps X253 X 1)) = ALKy + Xpis X+ Xpu— 1)
s0
(1.20) AfXg, %) = AdX1 + Xy X253 X 1) = Prom—1-
This shows B, ,, < B, »—1. The inverse relation is trivial. We have

() - )

. J . J
Y Yo
m+1 m-—1

and with x = (1/m,-+-,1/m) the calculation above gives us therefore

1 1 1 1
Ar('rh—:"', _YZ) P (Q’Ir.m+1’ fm (E, ’E’O))

1 1 2
P(QIr,m—l, (”,7*,;:%))
L_.__Y__J

m—1

1 1
< P(ﬂr.m’(m — 19"'9 m — 1)) =Br.m—-l =ﬁr.m'

— ~ J
m—1

This completes the proof of the theorem. [

COROLLARY TO THEOREM 1.1 When re {2,3,4}, then
(1.21) Afxys 05 Xp) S ALK, -, X)

for all (xqs-++,x,) with x, 20 for i =1,---,m iff r = m(2).

This follows immediately from theorem 1.1(i) and from 4, being homogenous
of degree r.

For the alternating polynomial (1.2) one may also use the arithmetic-geometric
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mean inequality separately for every term. This leads for x = (x,,+--,x,) =0 to
(1.22) A(xg, X)X {( 2z %) Ie ¥,,,

iel
However, the inequality (1.21) gives in general a sharper estimate. For example

when r =3, m=35, x;=1ifor i=1,--,5 then 4(1,2,---,5)=120, the right side
of (1.21) is 135, the right side of (1.22) is 155.

2. An application to a combinatorial problem

DerINITION 2.1. When d = (d,,---,d,) is a binary number, then a subsequence
of d

6 =(dy,.d,)

is called alternating, if d; +d; , =1forv=1,---,r — 1. Then

vt 1
a(d) = #% {0 =(d;, "+, d; ): § alternating).
When D, is the set of all binary numbers with ¢t digits we define
%, =max{a, (d):deD;}.

When d = (0,1,---) € D, is the binary number which forms an alternating sequence
itself and which has 0 as its first digit, then we conjecture:

2.1) o, = a(d) forevery r=1,--,1.

This conjecture is near at hand. However, we were not able to solve it in general.

We pointed out in [2], that (2.1) has a graph theoretical meaning, too. The
following definitions 2.2,3 and Lemma 2.1 which prepare theorem 2.1 are essential-
Iy the same as in [2].

DEFINITION 2.2. Suppose M(t)={1,2,---,t}, deD,, p,qe M(t), p<gq. Then
p,q are d-equivalent iff d,=d,.; = =d, The equivalence classes are the
blocks of d. When 6=(d;, -, d; ), 6* =(d;,, -,d, ) are subsequences of d,then
0, 6* are equivalent, iff r =5 and i,,j, are d-equivalent for v=1,-.-,r.

It is plain that, when p,q are not d-equivalent with p < gand when g, ¢* are

d-equivalent, then p < g*, too. Therefore the natural order devolves upon blocks
of d.

DeriNiTION 2.3. Suppose de D, has the sequence of blocks

(Npy s Ny Ny <o <N,
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a) When # N; = n,;, then

v(d) = (ng 1)
is the partition of d.

b) f, is the mapping of M(t) = {1,---,t} onto M = {1,--,m} defined by
ieNgw -
Obviously the partition v(d) of d is a partition of ¢, i.e. is an ordered sequence of
positive integers n; with ny + -« +n,, =t We write 0'=1,1"=0 andto d =
(dy, -+, d,)thend’ =(di,---,d;).When v is any partition of ¢, then there exist exactly
two binary numbers d, d* e D, with vW(d) = v(d*) = v and here d* = d’. We have
a/(d) = a,(d’) for every de D,. So when «,,= a,(d), then a,, = a/(d’), too.

LemMA 2.1. For every deD, with v(d) = (ny,++,n,,) we have
ar(d) = Ar(nb "'anm)
Proor. When 6 =(d,, -,d;) is a subsequence of d, then the number of

sequences equivalent with d is

N (T F BT

Now § is alternating iff f,(j,) + fi(jy+1) = 1(2) for v=1,--,r—1, i.e. iff {f(j;)
v Gy e U, ... This gives us

{6 =(d;,+-,d;): 6 alternating}

y=

= Z { Hl nfd(jl): {fd(jl)’ ttty {fd(]r)} € QIr»m}
= X { IT n:1e ..,
iel
= Ar(nb'"’”m)' U
We use Theorem 1.1 for proving the conjecture (2.1) when r =1,2,3,4.
THEOREM. 2.1. When r £ 4, then
Oyt = a,(d).

When r = 3,4, then «, , is attained only for d or d' iff r = 4(2).

ProOF. Suppose d € D, has the partition w(d) = (n,,---,n,). We have to regard
several cases separately.

1) r = 1. This case follows from a,(d) =t for every de D,.

2y r=2 1Itis
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[t -; 1] ' [’%] = max {u - v: u,v positive integers, u + v = t}.
With
u(d) = X{n;:iodd}
g(d) = X{n;:jeven}
we have

ay(d) = u(d) - g(d)
and therefore

max{a;(d): deD} < [il-] [i]

2 2
, t+1 t]
It is u(d) = [——2——], g(d) = [—fJ’
proving the case r = 2.
3) r =3,4,t =r(2). Then by the corollary to Theorem 1.1:
ar(d) = Ar(nl’ ""nm) = Ar(nls Tty n,,,,O, 90)
t—m
=< Ar(la "ty 1) = ar(d)'
t

Here equality holds iff m = t, equivalently iff n, = --- =n,,=1ie, iff d=d or
d=d'.

4) r=3,4,rx42),mst—3. Then

ar(d) = Ar(n a""nm):Ar(n ,--',n,,,,O,---,O
1 1 )'
t—m-3

t t
< et —
< A’(t 3T D 3) (corollary to Theorem 1.1)

= rC(t—3) (1.11)
< A(1,1,2 L 1.11
( ) (Lemma 1.11)
t21
= 4,1,-,1) 1.20
t , (1.20)

= a/(d).
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5) r=23,4,r £ t2),m=1t-—2. Here r £ m(2) and therefore with (1.20)
a(d)=Any, - n,) = A(ny + Ry Ngy ooy Ny o).
There exists a deD,_, with Wd)=(n, + n,,ny,,np_,), so al(d)=a,d).
From part 4 of this proof we obtain a,(d) < a,(d), showing
a,(d) < a(d).

6) r=3,4, r £ 1(2), m =t — 1. Here exists exactly one je M with n; =2 and
it is n, =1 for every ie M\{j}, so

ar(d) = Ar(l’ 0,2, ) 1)

From r = m(2), Lemma 1.1 and (1.12) immediately follows
A1, 2,0,1) = 42,1, -+, 1).
From (1.20) we obtain
A1) = A1, 1) = a(d),
e
so together
a(d) = a/(d),
completing the proof. []
The conjecture 2.1 may also be verified directly when m —r =0,1,2.

Addendum. After this paper was sent for publication the author proved Theo-
rem 1.1 without the restriction r < 4 and Heiko Harborth proved the conjecture
2.1.

REFERENCES

1. C. Mac-Laurin, 4 second letter to Martin Folges, Esq., concerning the roots of equations
with the demonstration of other rules in algebra, Philos. Trans. 36 (1729), 59-96.
2. F. Hering, Nested bipartite graphs, Israel J. Math. 9 (1971), 403-417.

UNIVERSITY OF WASHINGTON
SEATTLE, WASHINGTON



