A GENERALIZATION OF THE ARITHMETIC-GEO-METRIC MEAN INEQUALITY AND AN APPLICA-TION TO FINITE SEQUENCES OF ZEROS AND **ONES**

BY FRANZ HERING*

ABSTRACT

We generalize the arithmetic-geometric mean inequality to a new class of polynomials and give a combinatorial application.

Introduction

The elementary symmetric polynomial $S_r(x_1, \dots, x_m)$ of degree r has the following property: When $x = (x_1, \dots, x_m) \ge 0$ and $\bar{x} = (x_1 + \dots + x_m)/m$, then $S_r(x_1, \dots, x_m)$ $\leq S_r(\bar{x}, \dots, \bar{x})$. For $r = m$ this is just the arithmetic-geometric mean inequality for $S_m(x_1, ..., x_m) = x_1 \cdots x_m \le ((x_1 + \cdots + x_m)/m)^m = S_r(\bar{x}, ..., \bar{x})$. The generalization to an arbitrary r is due to Mac-Laurin [1]. We prove here a similar inequality for another class of polynomials which occur in a problem of sequences of zeros and ones.

1. The inequality

M denotes always the set of integers $1, \dots, m$ and 2^M its powerset.

DEFINITION 1.1. When $I = \{i_1, \dots, i_r\} \in 2^M$ such that $i_1 < \dots < i_r$ holds, then I is *alternating*, iff i_v even is equivalent to i_{v+1} odd for $v = 1, \dots, r - 1$. Then

(1.1)
$$
\mathfrak{A}_{r,m} = \{I \in 2^M: I = r, I \text{ alternating}\}.
$$

(1.2)
$$
A_r(x_1, \cdots, x_m) = \sum \left\{ \prod_{i \in I} x_i : I \in \mathfrak{A}_{r,m} \right\}
$$

* The work for this research was supported by the Max Kade Foundation.

Received July 14, 1970 and in revised form September 13, 1971

is the *alternating polynomial* of degree r in m variables. For example

(The digits of each line are an element of $\mathfrak{A}_{3,7}$).

Let $\beta_{r,m}$ denote the maximum of $A_r(x_1, \dots, x_m)$ on the simplex

(1.3) $S = \{(x_1, \dots, x_m) \in \mathbb{R}^m : x_i \geq 0 \text{ for } i = 1, \dots, m, \sum x_i = 1\}.$

Then we prove the following

THEOREM 1.1. (i) When $r \leq 4$, then

(1.4)
$$
\beta_{r,m} = \begin{cases} A_r(\frac{1}{m}, \cdots, \frac{1}{m}) & \text{for } r \equiv m(2) \\ A_r(\frac{1}{m-1}, \cdots, \frac{1}{m-1}, 0) & \text{for } r \neq m(2) \end{cases}
$$

(ii) When $r = 3$ or $r = 4$ and $r \equiv m(2)$, then $\beta_{r,m}$ is attained uniquely at $(1/m, ..., 1/m)$ on *S. When* $r \neq m(2)$, $r \in \{2, 3, 4\}$, *then* $\beta_{r,m} = \beta_{r,m-1}$ *and* $\beta_{r,m}$ *is* not attained at $(1/m, \dots, 1/m)$.

Whether the condition $r \leq 4$ may be dropped remains open. When $r = m$, then (1.4) is also true, it is then equivalent to the arithmetic-geometric mean inequality. We prepare the proof be several lemmas, some of them dealing mainly with combinatorial properties of $\mathfrak{A}_{r,m}$.

The *cyclic permutation T* of M is defined by

$$
(1.5) \t\t T(i) = \begin{cases} i+1 & \text{for } i < m, \\ 1 & \text{for } i = m. \end{cases}
$$

In general, when f is a mapping from a set A into a set B, then f develops canonically to a mapping from 2^A into 2^B and we use the same letter for this mapping. So we have for $I \subset M$

$$
T(I) = \{T(i): i \in I\}
$$

and for $\mathfrak{A} \subset 2^M$

$$
T(\mathfrak{A}) = \{T(I): I \in \mathfrak{A}\}.
$$

LEMMA 1.1. $T(\mathfrak{A}_{r,m}) = \mathfrak{A}_{r,m}$ iff $r \equiv m(2)$.

PROOF. Suppose $I = \{i_1, \dots, i_r\} \in \mathfrak{A}_{r,m}$ with $i_1 < \dots < i_r$, so $i_v + i_{v+1} \equiv 1(2)$ for $v = 1, \dots, r-1$. We have trivially $T(i_v) + T(i_{v+1}) = i_v + i_{v+1} + 2 \equiv 1(2)$ for $v = 1, \dots, r - 2$ and if $i_r < m$, then also for $v = r - 1$, proving $T(I) \in \mathfrak{A}_{r,m}$ in this case. When $i_r = m$, then $T(I) \in \mathfrak{A}_{r,m}$ iff $T(m) + T(i_1) \equiv 1(2)$. Now $T(m) + T(i_1)$ $i_1 + 2 \equiv i_1(2)$ and $i_1 \equiv 1(2)$ iff $i_r \equiv r(2)$. This shows $T(\mathfrak{A}_{r,m}) \subset \mathfrak{A}_{r,m}$ iff $r \equiv m(2)$. From T being one-to-one on the finite set 2^M we obtain $T(\mathfrak{A}_{r,m}) = \mathfrak{A}_{r,m}$.

To $N \subset M$, $\mathfrak{N} \subset 2^M$ we define

$$
\mathfrak{N}[N] = \{I \in \mathfrak{N} : I \cap N = \emptyset\}
$$

$$
\mathfrak{N}\langle N \rangle = \{U \subset M : U \cap N = \emptyset, U \cup N \in \mathfrak{N}\}.
$$

When $N = \{n\}$, we write $\mathfrak{N}[n]$, $\mathfrak{N}\langle n \rangle$ instead of $\mathfrak{N}[\{n\}]$, $\mathfrak{N}\langle \{n\} \rangle$.

Then

(1.6)
$$
\mathfrak{N} = \mathfrak{N}[n] \cup \{U \cup \{n\} : U \in \mathfrak{N}\langle n \rangle\}.
$$

(Here \odot means: union of disjoint sets).

The following lemma is plain:

LEMMA 1.2

$$
T(\mathfrak{N}[N]) = (T(\mathfrak{N})) [T(N)],
$$

\n
$$
T(\mathfrak{N}\langle N \rangle) = (T(\mathfrak{N})) \langle T(N) \rangle.
$$

\nPROOF.
\n
$$
T(\mathfrak{N}[N]) = T(\{I \in \mathfrak{N} : I \cap N = \emptyset\})
$$

\n
$$
= \{J \in T(\mathfrak{N}) : T^{-1}(J) \cap N = \emptyset\}
$$

\n
$$
= (T(\mathfrak{N})) [T(N)].
$$

Vol. 11, 1972 ARITHMETIC-GEOMETRIC MEAN INEQUALITY 17

The second equation follows analogously. \square We have from Definition 1.1

(1.8)
$$
\begin{cases} \mathfrak{A}_{r,m}[m] = \mathfrak{A}_{r,m-1} \\ \{T^{-1}(I): I \in \mathfrak{A}_{r,m}[1]\} = \mathfrak{A}_{r,m-1} \end{cases}
$$

and we want to obtain a similar result when $n \neq 1$, *m* in $\mathfrak{A}_{r,m}[n]$.

DEFINITION 1.2. *When m > 2, we define a mapping* ϕ_n *of M onto M \ {m, m-1} for every* $n \in M$ *:*

$$
\phi_1(j) = \begin{cases}\n1 & \text{for } j = 1, m \\
j - 1 & \text{for } j = 2, 3, \dots, m - 1\n\end{cases}
$$
\n
$$
\phi_m(j) = \begin{cases}\nm - 2 & \text{for } j = 1, m \\
j - 1 & \text{for } j = 2, \dots, m - 1\n\end{cases}
$$
\n
$$
\phi_n(j) = \begin{cases}\nj & \text{for } j = 1, \dots, n - 1 \\
n - 1 & \text{for } j = n \quad (n = 2, \dots, m - 1).\n\end{cases}
$$
\n
$$
\phi_n(j) = \begin{cases}\nj & \text{for } j = 1, \dots, n - 1 \\
n - 1 & \text{for } j = n + 1, \dots, m\n\end{cases}
$$

LEMMA 1.3. *When* $m \equiv r(2)$ *or* $1 < n < m$ *then*

$$
\phi_n(\mathfrak{A}_{r,m}[n]) = \mathfrak{A}_{r,m-2}.
$$

PROOF. We first assume $1 < n < m$. Suppose $I \in \mathfrak{A}_{r,m}[n]$.

We observe that $\phi_n(I) = r$: Now $\phi_n(a) \neq \phi_n(b)$ for $a \neq b$, iff $\{a, b\} \neq \{n - 1,$ $n, n + 1$. By hypothesis, $n \notin I$, so in order to show that $\# \phi_n(I) = r$, it suffices to show that ${n-1, n+1} \nsubseteq I$. But if $n-1, n+1$ were in I they would be successive elements with $(n - 1) + (n + 1) \equiv 0(2)$ contradicting that I is alternating.

When $u \in M \setminus \{n\}$, then either $\phi_n(u) = u$ or $\phi_n(u) = u-2$. Therefore, when u, $v \in M \setminus \{n\}$, then $u + v \equiv \phi_n(u) + \phi_n(v)$ (2). This proves $\phi_n(I) \in \mathfrak{A}_{r,m-2}$ and therefore $\phi_n(\mathfrak{A}_{r,m}[n]) \subset \mathfrak{A}_{r,m-2}$.

To prove the reverse inclusion, we define a mapping ψ_n from $M\{m-1,m\}$ onto $M \setminus \{n, n + 1\}$ by

$$
\psi_n(j) = \begin{cases} j & \text{for } j < n \\ j + 2 \text{ for } j \ge n \end{cases}
$$

When $J \in \mathfrak{A}_{r,m-2}$, then obviously $\psi_n(J) \in \mathfrak{A}_{r,m}[n]$ and $\phi_n(\psi_n(J))=J$. So $\phi_n(\mathfrak{A}_{r,m}[n]) = \mathfrak{A}_{r,m-2}.$

Now we assume $m \equiv r(2)$ and $n = 1$. We have $\phi_1 \circ T^{-1} = \phi_2$, so

$$
\phi_1(\mathfrak{A}_{r,m}[1])
$$
\n
$$
= \phi_1(T^{-1}(\mathfrak{A}_{r,m})[T^{-1}(2)]) \qquad \text{(Lemma 1.1)}
$$
\n
$$
= \phi_1(T^{-1}(\mathfrak{A}_{r,m}[2])) \qquad \text{(Lemma 1.2)}
$$
\n
$$
= \phi_2(\mathfrak{A}_{r,m}[2])
$$
\n
$$
= \mathfrak{A}_{r,m-2}.
$$

 $\phi_m(\mathfrak{A}_{rm}[m]) = \mathfrak{A}_{rm-2}$ follows analogously. \square

The following example gives \mathfrak{A}_3 ₇[2] and $\phi_2(\mathfrak{A}_3,_7[2])$:

To every element of $\mathfrak{A}_{3,7}[2]$ its image under ϕ_2 is in the same line. Observe that ϕ_2 is not one-to-one.

LEMMA 1.4. *When* $1 < n < m$ then

$$
(\mathfrak{A}_{r,m}\langle n-1\rangle)\ [n]=(\mathfrak{A}_{r,m}\langle n+1\rangle)\ [n].
$$

PROOF. When $U \in (\mathfrak{A}_{r,m}(n-1))$ [n], then $n-1$, $n \notin U$ and $U \cup \{n-1\}$ $\in \mathfrak{A}_{r,m}$. Therefore $n + 1 \in U$ is impossible, for otherwise $n - 1$ and $n + 1$ would be subsequent elements of $U \cup \{n-1\}$ and $(n-1) + (n+1) \equiv 0(2)$. This is a contradiction to $U \cup \{n-1\} \in \mathfrak{A}_{r,m}$. From $n+1 \notin U$ we obtain $U \cup \{n+1\}$ $\in \mathfrak{A}_{r,m}$, too i.e. $U \in (\mathfrak{A}_{r,m} \langle n+1 \rangle)$ [n]. The inverse relation follows analogously. \square

Vol. 11, 1972 ARITHMETIC-GEOMETRIC MEAN INEQUALITY 19

COROLLARY. *When* $m \geq 3$ and $r \equiv m(2)$, *then*

$$
(1.7) \qquad (\mathfrak{A}_{r,m}\langle T^{-1}(n)\rangle)[n]=(\mathfrak{A}_{r,m}\langle T(n)\rangle)[n] \quad \text{for every } n\in M.
$$

Only the cases $n = 1$ and $n = m$ are not covered by the previous lemma.

PROOF.
$$
(\mathfrak{A}_{r,m}\langle T^{-1}(n)\rangle)[n]
$$

\n
$$
= ((T^{n-2}(\mathfrak{A}_{r,m}))\langle T^{-1}(n)\rangle)[n]
$$
\n
$$
= ((T^{n-2}(\mathfrak{A}_{r,m}))\langle T^{n-2}(1)\rangle)[T^{n-2}(2)]
$$
\n
$$
= (T^{n-2}(\mathfrak{A}_{r,m}\langle 1\rangle))[T^{n-2}(2)]
$$
\n
$$
= T^{n-2}((\mathfrak{A}_{r,m}\langle 1\rangle)[2])
$$
\n
$$
= T^{n-2}((\mathfrak{A}_{r,m}\langle 1\rangle)[2])
$$
\n
$$
= T^{n-2}((\mathfrak{A}_{r,m}\langle 1\rangle)[2])
$$
\n
$$
= (T^{n-2}(\mathfrak{A}_{r,m}\langle 3\rangle))[T^{n-2}(2)]
$$
\n
$$
= ((T^{n-2}(\mathfrak{A}_{r,m}))\langle T^{n-2}(3)\rangle)[T^{n-2}(2)]
$$
\n(Lemma 1.2)
\n
$$
= ((T^{n-2}(\mathfrak{A}_{r,m}))\langle T(n)\rangle)[n]
$$
\n
$$
= (\mathfrak{A}_{r,m}\langle T(n)\rangle)[n].
$$
\n(Lemma 1.1)
\n
$$
= (\mathfrak{A}_{r,m}\langle T(n)\rangle)[n].
$$

The condition $r \equiv m(2)$ in the corollary is necessary. For example

$$
(\mathfrak{A}_{3,6}\langle 6 \rangle)[1] = \{\{2,3\},\{2,5\},\{4,5\}\}\
$$

$$
\neq (\mathfrak{A}_{3,6}\langle 2 \rangle)[1] = \{\{3,4\},\{3,6\},\{5,6\}\}.
$$

The following lemma is obtained analogously to Lemma 1.4 but a little more complicated.

LEMMA 1.5. When
$$
m \ge 4
$$
, $r \ge 2$ and $1 \le n \le m - 3$, then
\n
$$
(\mathfrak{A}_{r,m}\langle{n,n+1}\rangle)[n+2] = (\mathfrak{A}_{r,m}\langle{n+2,n+3}\rangle)[n+1]
$$

PROOF. Suppose $V \in (\mathfrak{A}_{r,m} \langle \{n, n+1\} \rangle)$ $[n+2]$. Then $\{n, n+1, n+2\} \cap V$ $=\emptyset$ and $V \cup \{n, n + 1\} \in \mathfrak{A}_{r,m}$.

The assumption $n + 3 \in V$ gives us again (as in the proof of Lemma 1.4) a contradiction to $V \cup \{n, n + 1\} \in \mathfrak{A}_{r,m}$. Therefore $V \cup \{n + 2, n + 3\} \in \mathfrak{A}_{r,m}$, showing $V \in (\mathfrak{A}_{r,m}(\{n+2,n+3\}))$ [n + 1]. The inverse relation needs no new argument. \square

The following corollary follows by a similar calculation as the corollary to Lemma 1.4.

COROLLARY. *When* $m \geq 4$, $r \geq 2$, $m \equiv r(2)$ *then we have*

$$
(1.8) \qquad (\mathfrak{A}_{r,m}\langle\{n,T(n)\}\rangle)\left[T^2(n)\right]=(\mathfrak{A}_{r,m}\langle\{T^2(n),T^3(n)\}\rangle)\left[T(n)\right].
$$

for every $n \in M$ *.* \Box

When $I \subset M$, then min I is the smallest element of I. Then we define

(1.9)
$$
\begin{cases} a_{r,m} = \# \mathfrak{A}_{r,m}, \\ b_{r,m} = \# \{I \in \mathfrak{A}_{r,m}: \min I \equiv 1(2)\}, \\ c_{r,m} = \# \{I \in \mathfrak{A}_{r,m}: \min I \equiv 0(2)\}. \end{cases}
$$

LEMMA 1.6. $c_{r,m} = b_{r,m-1}$ for $m > 1$. PROOF. $T^{-1}(\{I \in \mathfrak{A}_{r,m}: \min I \equiv 0(2)\}) = \{J \in \mathfrak{A}_{r,m-1}: \min I \equiv 1(2)\}\)$, therefore $c_{r,m} = # (T^{-1}(\lbrace I \in \mathfrak{A}_{r,m}: \min I \equiv 0(2) \rbrace))$ $=$ $\#$ ({ $J \in \mathfrak{A}_{r,n-1}$; min $I \equiv 1(2)$ }) $= b_{r,m-1}$. LEMMA 1.7. $b_{r,m} = b_{r,m-2} + b_{r-1,m-1}$ for $2 \le r \le m-2$. PROOF. $b_{r,m} = \# \{I \in \mathfrak{A}_{r,m}: \min I = 1\}$ $+$ # ${I \in \mathfrak{A}}$, , : min ${I \geq 3}$, min ${I \equiv 1(2)}$ $=$ $\# \{V \subset M: 1 \notin V, V \cup \{1\} \in \mathfrak{A}_{\{m\}}\}$ $+$ # $T^{-2}({I \in \mathfrak{A}_{r,m}: \min I \geq 3, \min I \equiv 1(2)})$ $=$ $\#$ { $V \in \mathfrak{A}_{r-1,m}$; min $V \equiv 0(2)$ } + $\# \{ J \in \mathfrak{A}_{r,m-2} : \min J \equiv 1(2) \}.$ $= c_{r-1,m} + b_{r,m-2}$ $= b_{r-1,m-1} + b_{r,m-2}$. (Lemma 1.6) \Box LEMMA 1.8. $\binom{m - \left[\frac{1}{2}(m - r + 1)\right]}{m - \left[\frac{1}{2}(m - r + 2)\right]}$ *r r r r r r*

equal to x). (As usual $\binom{u}{v} = 0$ *for* $u < v$ *and* $\lfloor x \rfloor$ *denotes the greatest integer less than or*

PROOF. We show by induction:

(1.10)
$$
b_{r,m} = {m - \left[\frac{1}{2}(m - r + 1)\right]}_r.
$$

(1.10) holds for $r = 1$, $r = m - 1$, $r = m$. Using Lemma 1.7 and the induction

hypothesis we obtain (1.10) and the lemma follows then from (1.10), Lemma 1.6 and $a_{r,m} = b_{r,m} + c_{r,m}$.

COROLLARY.

$$
A_r\left(\frac{1}{m},\cdots,\frac{1}{m}\right)=\frac{1}{m^r}\left[\binom{m-\left[\frac{1}{2}(m-r+1)\right]}{r}+\binom{m-\left[\frac{1}{2}(m-r+2)\right]}{r}\right].
$$

LEMMA 1.9.

$$
\left(\frac{1+1/n}{1-1/n}\right)^s < \frac{1+s/n}{1-s/n} \text{ for } 2 \le s \le n.
$$

PROOF. When $s = 1$, equality holds. Now suppose $s > 1$ and we have

$$
\left(\frac{1+1/n}{1-1/n}\right)^{s-1} \leq \frac{1+\frac{s-1}{n}}{1-\frac{s-1}{n}}
$$

by induction hypothesis. Then

$$
\frac{1+1/n}{1-1/n} \leq \frac{\left(1+\frac{s-1}{n}\right)\left(1+\frac{1}{n}\right)}{\left(1-\frac{s-1}{n}\right)\left(1-\frac{1}{n}\right)} = \frac{1+\frac{s}{n}+\frac{s-1}{n^2}}{1-\frac{s}{n}+\frac{s-1}{n^2}} < \frac{1+\frac{s}{n}}{1-\frac{s}{n}}.
$$

Define

(1.11)
$$
C_r(m) = A_r\left(\frac{1}{m}, \dots, \frac{1}{m}\right).
$$

LEMMA 1.10. When $2 < r \leq m$, $m \equiv r(2)$, then $C_r(m) < C_r(m + 2)$.

PROOF. We have from $r \equiv m(2)$, the corollary to Lemma 1.8 and (1.11)

$$
C_r(m) = \frac{1}{m^r} \left[\binom{\frac{1}{2}(m+r)}{r} + \binom{\frac{1}{2}(m+r-2)}{r} \right].
$$

A straightforward but somewhat tedious calculation gives

$$
C_r(m+2) - C_r(m) = \frac{1}{2^{r-1}r!} \prod_{\nu=1}^{r-2} (m+r-2\nu) \left\{ \frac{m+r}{(m+2)^{r-1}} - \frac{m-r+2}{m^{r-1}} \right\}.
$$

So all we have to show, that $\{\cdots\}$ is positive. This follows from Lemma 1.9 with $n = m + 1$ and $s = r - 1$.

We are now prepared to prove our theorem. However for a later application we first state the following

LEMMA 1.11. *When* $2 < r \leq m$, $m \equiv r(2)$, then

$$
C_r(m) < \frac{1}{(m+3)^r} \quad \underbrace{A_r(1,\cdots,1,2)}_{m+1} \quad \Box
$$

We omit the proof, which is a straightforward but tedious calculation.

PROOF OF THE THEOREM. When $\mathfrak{A} \subset 2^M$, $x \in \mathbb{R}^m$ we define the polynomial $P({\mathfrak{A}},\cdot)$ by

(1.12)
$$
P(\mathfrak{A},x)=\sum\left\{\prod_{i\in I} x_i\colon I\in\mathfrak{A}\right\}.
$$

(As usual the product over the empty index set is 1). When $\mathfrak{A} = \mathfrak{B} \cup \mathfrak{C}$, then $P(\mathfrak{A},x) = P(\mathfrak{B},x) + P(\mathfrak{C},x)$. Therefore by (1.6)

$$
P(\mathfrak{A},x)=P(\mathfrak{A}[i],x)+x_iP(\mathfrak{A}\langle i\rangle,x).
$$

For the alternating polynomial we obtain $A_r(x_1, \dots, x_m) = P(\mathfrak{A}_{r,m},x)$.

When $r = 1$, then our theorem is trivial, for $P(\mathfrak{A}_{r,m}, x) \equiv 1$ on S. When $r = 2$, then

$$
A_2(x_1, \cdots, x_m) = \left(\sum_{i \equiv 0(2)} x_i\right) \left(\sum_{j \equiv 1(2)} x_j\right)
$$

and this product is maximal on S iff

(1.13)
$$
\sum_{i \equiv 0(2)} x_i = \sum_{j \equiv 1(2)} x_j.
$$

So $x_1 = \cdots = x_m = 1/m$ is a solution of (1.13) iff $m \equiv 0(2)$. When $r \not\equiv m(2)$, then $(1/(m-1), \dots, 1/(m-1), 0)$ is a boundary point of S which solves (1.13). Therefore

$$
A_2 \underbrace{\left(\frac{1}{m}, \cdots, \frac{1}{m}\right)}_{m} < \beta_{2 m} = A_2 \underbrace{\left(\frac{1}{m-1}, \cdots, \frac{1}{m-1}, 0\right)}_{m}
$$
\n
$$
= A_2 \underbrace{\left(\frac{1}{m-1}, \cdots, \frac{1}{m-1}\right)}_{m} = \beta_{2, m-1}.
$$

This proves the case $r = 2$ of our theorem. $m - 1$

Now suppose $r \geq 3$. We build the Lagrange-function

Vol. 11, 1972 ARITHMETIC-GEOMETRIC MEAN INEQUALITY

(1.14)
$$
L(x,\lambda) = P(\mathfrak{A}_{r,m},x) + \lambda(1 - \langle e,x \rangle).
$$

(Here $\langle e, x \rangle$ is the scalar product of $e = (1, \dots, 1)$ and x).

Using (1.6) we have

$$
\frac{\partial}{\partial x_{n-1}} P(\mathfrak{A}_{r,m}, x) = P(\mathfrak{A}_{r,m} \langle n-1 \rangle, x)
$$

\n
$$
= P((\mathfrak{A}_{r,m} \langle n-1 \rangle) [n], x) + x_n P(\mathfrak{A}_{r,m} \langle n-1, n \rangle), x),
$$

\n
$$
\frac{\partial}{\partial x_{n+1}} P(\mathfrak{A}_{r,m}, x) = P(\mathfrak{A}_{r,m} \langle n+1 \rangle, x)
$$

\n
$$
= P((\mathfrak{A}_{r,m} \langle n+1 \rangle) [n], x) + x_n P(\mathfrak{A}_{r,m} \langle n+1, n \rangle), x).
$$

For a stationary point $(x_1^*, \dots, x_m^*, \lambda^*)$ of L we obtain

(1.15)
$$
\frac{\partial}{\partial x_n} P(\mathfrak{A}_{r,m}, x^*) = \lambda^* \text{ for all } n \in M.
$$

The combinatorial preparations serve now to handle the equations (1.15). When $1 < n < m$ we get from Lemma 1.4

$$
x_n^*P(\mathfrak{A}_{r,m}\langle{n-1,n}\rangle),x^*)=x_n^*P(\mathfrak{A}_{r,m}\langle{n+1,n}\rangle),x^*).
$$

When x^* is an interior point of S, we have $x_n > 0$. So we obtain for every *n* with $1 \leq n < m$

$$
(1.16) \tP(\mathfrak{A}_{r,m}\langle\{1,2\}\rangle,x^*)=P(\mathfrak{A}_{r,m}\langle\{n,n+1\}\rangle,x^*).
$$

We have from (1.6) for $2 \le n \le m-2$ again

$$
P(\mathfrak{A}_{r,m}\langle{n-1,n}\rangle,x^*)
$$

= $P((\mathfrak{A}_{r,m}\langle{n-1,n}\rangle)[n+1],x^*)+x_{n+1}^*P(\mathfrak{A}_{r,m}\langle{n-1,n,n+1}\rangle,x^*),$
 $P(\mathfrak{A}_{r,m}\langle{n+1,n+2}\rangle,x^*)$
= $P((\mathfrak{A}_{r,m}\langle{n+1,n+2}\rangle)[n],x^*)+x_n^*P(\mathfrak{A}_{r,m}\langle{n,n+1,n+2}\rangle,x^*).$

This gives us together with (1.16) and Lemma 1.5

$$
(1.17) \quad x_n^* P(\mathfrak{A}_{r,m} \langle \{n, n+1, n+2\} \rangle, x^*) = x_{n+1}^* P(\mathfrak{A}_{r,m} \langle \{n-1, n, n+1\} \rangle, x^*) \; .
$$

Now we assume $r = 3$. Then $\mathfrak{A}_{3,m} \langle \{n, T(n), T^2(n)\} \rangle = \emptyset$ for every $n \in M$, so $P(\mathfrak{A}_{3,m}\langle{n, T(n), T^2(n)}\rangle) = 1$. From (1.17) therefore it follows $x_2^* = \cdots = x_{m-1}^*$. When *m* odd, then (1.8) gives us $x_1^* = x_2^* = \cdots = x_{m-1}^* = x_m^* = 1/m$.

Returning to the general case we obtain from (1.17) for $r \ge 3$, $2 \le n \le m - 3$ with $n + 1$ instead of n

(1.18)
$$
x_{n+1}^{*} P(\mathfrak{A}_{r,m}\langle{n+1,n+2,n+3}\rangle,x^{*}) = x_{n+2}^{*} P(\mathfrak{A}_{r,m}\langle{n,n+1,n+2}\rangle,x^{*}).
$$

It follows from (1.17) and (1.18)

$$
x_{n+2}^* x_{n+1}^* P(\mathfrak{A}_{r,m} \langle \{n-1,n,n+1\} \rangle, x^*) = x_{n+2}^* x_n^* P(\mathfrak{A}_{r,m} \langle \{n,n+1,n+2\} \rangle, x^*)
$$

= $x_n^* x_{n+1}^* P(\mathfrak{A}_{r,m} \langle \{n+1,n+2,n+3\} \rangle, x^*).$

Therefore, when x^* is an interior point of S we obtain

 (1.19) $x_{n+2}^{*} P(\mathfrak{A}_{r,m} \langle \{n-1,n,n+1\} \rangle, x^{*}) = x_{n}^{*} P(\mathfrak{A}_{r,m} \langle \{n+1,n+2,n+3\} \rangle, x^{*}).$ Now suppose $r = 4$. Then

$$
\mathfrak{A}_{4,m}\langle\{n-1,n,n+1\}\rangle=\{i\in M\colon i\equiv n(2), i\neq n\}.
$$

Therefore (1.19) becomes

$$
x_{n+2}^* \sum \{x_i^* : i \equiv n(2), i \neq n\} = x_n^* \sum \{x_i^* : i \equiv n(2), i \neq n+2\} \text{ or equivalently}
$$

$$
(x_{n+2}^* - x_n^*)(x_{n+2}^* + x_n^*) = (x_n^* - x_{n+2}^*) (\sum \{x_i^* : i \equiv n(2), i \neq n, n+2\}).
$$

So, when $x_{n+2}^* \neq x_n^*$, then at least one x_i^* , $i \equiv n(2)$ must be negative. Therefore we have reached the conclusion that $x_n^* = x_{n+2}^*$ or more general $x_i^* = x_i^*$ when $2 \leq i, j \leq m - 1$ and when *i,j* are both even or both odd. Now suppose *m* even. Then $r \equiv m(2)$ and so (1.8) gives us $x_1^* = x_3^*$ and $x_{m-2}^* = x_m^*$, too. With $a = x_1^*$, $b = x_2^*$ we have $x^* = (a, b, a, \dots, b)$ where $a + b = 2/m$.

In general, when r is even, then $\#\{i \in I : i \text{ odd}\} = \#\{i \in I : i \text{ even}\}$ for every $I \in \mathfrak{A}_{r,m}$. Therefore we have

$$
\prod_{i \in I} x_i^* = a^{r/2} \cdot b^{r/2} \le \left(\frac{a^{r/2} + b^{r/2}}{2}\right)^2
$$

with equality iff $a = b = 1/m$.

We put the results together:

Suppose $r = 3$ and m odd. When (x^*, λ^*) is a stationary point of the Lagrangefunction L and x^* is an interior point of S, then $x^* = (1/m, \dots, 1/m)$.

Suppose $r = 4$, *m* even and $(x_1^*, x_2^*, \dots, x_{m-1}^*, x_m^*, \lambda^*) = (x^*, \lambda^*)$ is a stationary point of L with x^* in the interior of S. Then $x_1^* = x_3^* = \cdots = x_{m-1}^*$, $x_2^* = x_4^*$ $x = \cdots = x_m^*$. Furthermore, when y is a point of the interior of S of the form $y = (a, b, \dots, a, b)$ with $a \neq 1/m$, then $A_r(y) < A_r(1/m, \dots, 1/m)$.

Now we prove that in these cases (i.e. for $r = 3, 4$, $r \equiv m(2)$)

$$
A_r(u_1, \dots, u_m) < A_r(1/m, \dots, 1/m)
$$

holds when $u = (u_1, \dots, u_m)$ is a boundary point of S. We apply induction on $m - r$. Indeed, when $m = r$, this inequality is just the arithmetic-geometric mean inequality for $r = m = 3, 4$. Now suppose $m - r > 0$. To every $j \in M$ we define a mapping f_i of \mathbb{R}^m into \mathbb{R}^{m-2} using definition 1.2 as follows: To

$$
x = (x_1, \dots, x_m) \in \mathbb{R}^m, \, k \in \{1, 2, \dots, m\}
$$

we define

$$
y_k = \sum \{x_p : p \in M, \phi_j(p) = k\}
$$

and $f_i(x) = (y_1, \dots, y_{m-2})$. So for example

$$
f_3(x) = (x_1, x_2 + x_3 + x_4, x_5, \cdots, x_{m-2}).
$$

Now suppose $u = (u_1, \dots, u_{i-1}, 0, u_{i+1}, \dots, u_m) \in S$ is a boundary point of S, so $A_r(u) = P(\mathfrak{A}_{r,m}[j],u)$ and also suppose that $I \in \mathfrak{A}_{r,m}[j]$ and $v = (v_1, \dots, v_{m-2})$ $=f_i(u)$.

When c and d are different elements of $M \setminus \{j\}$ with $\phi_j(c) = \phi_j(d)$, then $\{c, d\}$ $=\{T^{-1}(j), T(j)\}\)$. We have $\{T^{-1}(j), T(j)\}\neq I$ for every $I\in \mathfrak{A}_{r,m}[j]$, for $T^{-1}(j)$, $T(j)$ would be subsequent elements of I of the same parity. Therefore ϕ_i is oneto-one on every $I \in \mathfrak{A}_{r,m}[j]$, hence $v_{\phi_i(p)} = u_p$ for every $p \in I$ and so trivially

$$
\prod_{p\in I} u_p = \prod_{k\in\phi_i(I)} v_k.
$$

We define a mapping g on $\{I \in \mathfrak{A}_{r,m}[j]: T^{-1}(j) \in I\}$ by $g(I) = (I \setminus \{T^{-1}(j)\})$ $\cup \{T(j)\}\)$. Then $g(I) \in \mathfrak{A}_{r,m}[j]$, too and g maps $\{I \in \mathfrak{A}_{r,m}[j]: T^{-1}(j) \in I\}$ one-to-one onto $\{K \in \mathfrak{A}_{r,m}[j]: T(j) \in K\}$. This gives us

$$
\prod_{p\in I} u_p + \prod_{s\in g(I)} u_s = (u_{T^{-1}(j)} + u_{T(j)}) \prod_{s \in I} \{u_t : t \in I, t \neq T^{-1}(j)\} = \prod_{k \in \phi_j(I)} v_k.
$$

So finally using Lemma 1.3 we obtain

$$
P(\mathfrak{A}_{r,m}[j],u) = \sum \left\{ \prod_{k \in \Phi_j(I)} v_k : I \in \mathfrak{A}_{r,m}[j] \right\}
$$

=
$$
\sum \left\{ \prod_{k \in K} v_k : K \in \phi_j(\mathfrak{A}_{r,m}[j]) \right\}
$$

=
$$
\sum \left\{ \prod_{k \in K} v_k : K \in \mathfrak{A}_{r,m-2} \right\}
$$

=
$$
P(\mathfrak{A}_{r,m-2},v) = A_{r,m-2}(v_1, \cdots, v_{m-2}).
$$

Trivially $v_1 + \cdots + v_{m-2} = 1$, $v_i \ge 0$ for $i = 1, \dots, m-2$. Therefore the induction hypothesis leads to

$$
A_{r,m-2}(v_1,\dots,v_{m-2}) \leq A_r\left(\frac{1}{m-2},\dots,\frac{1}{m-2}\right) = C_r(m-2).
$$

From Lemma 1.10 we have therefore

 $A_{r,m}(u_1,..., u_m) \leq C_r(m-2) < C_r(m)$ for every point on the boundary of S.

Therefore $\beta_{r,m}$ is not attained at the boundary of S and is consequently attained at interior points x^* of S only, for which (x^*, λ^*) is a stationary point of L. This proves our theorem in the case $r \equiv m(2)$.

Now suppose $r \neq m(2)$, $r = 3$ or $r = 4$ and $(x_1, \dots, x_m) \in S$. Then

$$
A_r(x_1, \dots, x_m) = A_r(x_1, \dots, x_m, 0) = P(\mathfrak{A}_{r, m+1}, (x_1, \dots, x_m, 0))
$$

= $P(\mathfrak{A}_{r, m+1}[m+1], (x_1, \dots, x_m, 0)) = P(\mathfrak{A}_{r, m-1}, f_{m+1}(x_1, \dots, x_m, 0))$
= $P(\mathfrak{A}_{r, m}, (x_1 + x_m, x_2, \dots, x_{m-1})) = A_r(x_1 + x_m, x_2, \dots, x_{m-1})$

SO

$$
(1.20) \t Ar(x1,...,xm) = Ar(x1 + xm, x2,...,xm-1) \leq \betar,m-1.
$$

This shows $\beta_{r,m} \leq \beta_{r,m-1}$. The inverse relation is trivial. We have

$$
f_m\left(\underbrace{\left(\frac{1}{m},\cdots,\frac{1}{m},0\right)}_{m+1}\right)=\underbrace{\left(\frac{1}{m},\cdots,\frac{1}{m},\frac{2}{m}\right)}_{m-1}
$$

and with $x = (1/m, \dots, 1/m)$ the calculation above gives us therefore

$$
A_r\left(\frac{1}{m}, \dots, \frac{1}{m}\right) = P\left(\mathfrak{A}_{r,m+1}, f_m\left(\frac{1}{m}, \dots, \frac{1}{m}, 0\right)\right)
$$

$$
= P\left(\mathfrak{A}_{r,m-1}, \underbrace{\left(\frac{1}{m}, \dots, \frac{1}{m}, \frac{2}{m}\right)}_{m-1}\right)
$$

$$
< P\left(\mathfrak{A}_{r,m}, \underbrace{\left(\frac{1}{m-1}, \dots, \frac{1}{m-1}\right)}_{m-1}\right) = \beta_{r,m-1} = \beta_{r,m}.
$$

This completes the proof of the theorem. \Box

COROLLARY TO THEOREM 1.1 *When* $r \in \{2, 3, 4\}$, *then*

$$
(1.21) \t Ar(x1,...,xm) \leq Ar(\bar{x},..., \bar{x})
$$

for all (x_1, \dots, x_m) *with* $x_i \ge 0$ *for* $i = 1, \dots, m$ *iff* $r \equiv m(2)$.

This follows immediately from theorem 1.1(i) and from A_r being homogenous of degree r.

For the alternating polynomial (1.2) one may also use the arithmetic-geometric

mean inequality separately for every term. This leads for $x = (x_1, \dots, x_m) \ge 0$ to

(1.22)
$$
A_r(x_1, \cdots, x_m) \leq \sum \left\{ \left(\sum_{i \in I} \frac{x_i}{r} \right)^r I \in \mathfrak{A}_{r,m} \right\} .
$$

However, the inequality (1.21) gives in general a sharper estimate. For example when $r = 3$, $m = 5$, $x_i = i$ for $i = 1, ..., 5$ then $A_r(1, 2, ..., 5) = 120$, the right side of (1.21) is 135, the right side of (1.22) is 155.

o An application to a combinatorial problem

DEFINITION 2.1. When $d = (d_1, \dots, d_t)$ is a binary number, then a subsequence of d

$$
\delta = (d_{i_1}, \cdots, d_{i_n})
$$

is called *alternating*, if $d_{i_y} + d_{i_{y+1}} = 1$ for $v = 1, \dots, r - 1$. Then

$$
a_r(d) = \#\{\delta = (d_{i_1}, \dots, d_{i_n}) : \delta \text{ alternating}\}.
$$

When D_t is the set of all binary numbers with t digits we define

$$
\alpha_{r,t} = \max\{a_r(d): d \in D_t\}.
$$

When $\hat{d} = (0, 1, \dots) \in D_t$ is the binary number which forms an alternating sequence itself and which has 0 as its first digit, then we conjecture:

$$
\alpha_{r,t} = a_r(d) \text{ for every } r = 1, \dots, t.
$$

This conjecture is near at hand. However, we were not able to solve it in general.

We pointed out in $[2]$, that (2.1) has a graph theoretical meaning, too. The following definitions 2.2,3 and Lemma 2.1 which prepare theorem 2.1 are essentially the same as in [2].

DEFINITION 2.2. Suppose $M(t) = \{1, 2, \dots, t\}$, $d \in D_t$, $p, q \in M(t)$, $p \leq q$. Then *p,q* are *d*-equivalent iff $d_p = d_{p+1} = \cdots = d_q$. The equivalence classes are the *blocks of d.* When $\delta = (d_{i_1}, \dots, d_{i_r}), \delta^* = (d_{i_1}, \dots, d_{i_r})$ are subsequences of d, then δ , δ^* are *equivalent*, iff $r = s$ and i_v, j_v are *d*-equivalent for $v = 1, \dots, r$.

It is plain that, when p, q are not d-equivalent with $p < q$ and when q, q^* are d-equivalent, then $p < q^*$, too. Therefore the natural order devolves upon blocks of d.

DEFINITION 2.3. Suppose $d \in D_t$ has the sequence of blocks

$$
(N_1, \cdots, N_m), N_1 < \cdots < N_m
$$

a) When $N_i = n_i$, then

$$
v(d)=(n_1,\cdots,n_m)
$$

is the *partition of d.*

b) f_d is the mapping of $M(t) = \{1, \dots, t\}$ onto $M = \{1, \dots, m\}$ defined by

 $i \in N_{f_a(i)}$.

Obviously the partition $v(d)$ of d is a partition of t, i.e. is an ordered sequence of positive integers n_i with $n_1 + \cdots + n_m = t$. We write $0' = 1, 1' = 0$ and to $d =$ (d_1, \dots, d_m) then $d' = (d'_1, \dots, d'_m)$. When v is any partition of t, then there exist exactly two binary numbers d, $d^* \in D_t$ with $v(d) = v(d^*) = v$ and here $d^* = d'$. We have $a_r(d) = a_r(d')$ for every $d \in D_t$. So when $\alpha_{r,t} = a_r(d)$, then $\alpha_{r,t} = a_r(d')$, too.

LEMMA 2.1. *For every* $d \in D_t$ with $v(d) = (n_1, \dots, n_m)$ we have

$$
a_r(d) = A_r(n_1, \cdots, n_m)
$$

PROOF. When $\delta = (d_{i_1}, \dots, d_{i_r})$ is a subsequence of d, then the number of sequences equivalent with δ is

$$
n_{f_d(j_1)}\cdot\cdots\cdot n_{f_d(j)}.
$$

Now δ is alternating iff $f_d(j_v) + f_d(j_{v+1}) \equiv 1(2)$ for $v = 1, \dots, r-1$, i.e. iff $\{f_d(j_1),$ \cdots , $f_d(j_r)$ } \in $\mathfrak{A}_{r,m}$. This gives us

$$
\{\delta = (d_{i_1}, \dots, d_i) : \delta \text{ alternating}\}
$$

= $\sum \left\{ \prod_{v=1}^r n_{f_d(j_1)} : \{f_d(j_1), \dots, \{f_d(j_r)\} \in \mathfrak{A}_{r,m} \right\}$
= $\sum \left\{ \prod_{i \in I} n_i : I \in \mathfrak{A}_{r,m} \right\}$
= $A_r(n_1, \dots, n_m)$. \square

We use Theorem 1.1 for proving the conjecture (2.1) when $r = 1, 2, 3, 4$.

THEOREM. 2.1. When $r \leq 4$, then

$$
\alpha_{r,t}=a_r(d).
$$

When $r = 3, 4$, *then* $\alpha_{r,t}$ *is attained only for d or d' iff* $r \equiv t(2)$ *.*

PROOF. Suppose $d \in D_t$ has the partition $v(d) = (n_1, \dots, n_m)$. We have to regard several cases separately.

1) $r = 1$. This case follows from $a_1(d) = t$ for every $d \in D_t$.

2) $r=2$. It is

$$
\left[\frac{t+1}{2}\right] \cdot \left[\frac{t}{2}\right] = \max \{u \cdot v : u, v \text{ positive integers, } u + v = t\}.
$$

With

$$
u(d) = \sum \{n_i : i \text{ odd}\}
$$

$$
g(d) = \sum \{n_j : j \text{ even}\}
$$

we have

$$
a_2(d) = u(d) \cdot g(d)
$$

and therefore

$$
\max\left\{a_2(d):d\in D_t\right\} \leq \left[\frac{t+1}{2}\right] \cdot \left[\frac{t}{2}\right].
$$

It is $u(d) = \left[\frac{t+1}{2}\right], g(d) = \left[\frac{t}{2}\right],$

proving the case $r = 2$.

3) $r = 3, 4, t \equiv r(2)$. Then by the corollary to Theorem 1.1:

$$
a_r(d) = A_r(n_1, \cdots, n_m) = A_r(n_1, \cdots, n_m, \underbrace{0, \cdots, 0}_{t-m})
$$

$$
\leq A_r(\underbrace{1, \cdots, 1}_{t}) = a_r(d).
$$

Here equality holds iff $m = t$, equivalently iff $n_1 = \cdots = n_m = 1$ i.e., iff $d = d$ or $d=d'.$

4)
$$
r = 3, 4, r \neq t(2), m \leq t - 3
$$
. Then
\n
$$
a_r(d) = A_r(n_1, \dots, n_m) = A_r(n_1, \dots, n_m, 0, \dots, 0)
$$
\n
$$
t - m - 3
$$
\n
$$
\leq A_r\left(\frac{t}{t - 3}, \dots, \frac{t}{t - 3}\right) \quad \text{(corollary to Theorem 1.1)}
$$
\n
$$
= t^r C_r(t - 3) \qquad (1.11)
$$
\n
$$
< A_r(\underbrace{1, \dots, 1, 2}_{t - 1}) \qquad \text{(Lemma 1.11)}
$$
\n
$$
= A_r(\underbrace{1, \dots, 1}_{t}) \qquad (1.20)
$$
\n
$$
= a_r(\tilde{d}). \qquad (1.21)
$$

5) $r = 3, 4, r \neq t(2), m = t - 2$. Here $r \neq m(2)$ and therefore with (1.20)

$$
a_r(d) = A_r(n_1, \cdots, n_m) = A_r(n_1 + n_m, n_2, \cdots, n_{m-1}).
$$

There exists a $\hat{d} \in D_{m-1}$ with $v(\hat{d}) = (n_1 + n_m, n_2, \dots, n_{m-1}),$ so $a_r(d) = a_r(\hat{d}).$ From part 4 of this proof we obtain $a_r(\hat{d}) < a_r(\hat{d})$, showing

$$
a_r(d) < a_r(\tilde{d}).
$$

6) $r = 3, 4, r \not\equiv t(2), m = t - 1$. Here exists exactly one $j \in M$ with $n_i = 2$ and it is $n_i = 1$ for every $i \in M \setminus \{j\}$, so

$$
a_r(d) = A_r(1, \cdots, 2, \cdots, 1).
$$

From $r \equiv m(2)$, Lemma 1.1 and (1.12) immediately follows

$$
A_{r}(1, \cdots, 2, \cdots, 1) = A_{r}(2, 1, \cdots, 1).
$$

From (1.20) we obtain

$$
A_r(2,1,\dots,1) = A_r(1,\dots,1) = a_r(d),
$$

$$
t-1
$$

so together

$$
a_{\mathbf{r}}(d)=a_{\mathbf{r}}(d),
$$

completing the proof. \Box

The conjecture 2.1 may also be verified directly when $m - r = 0, 1, 2$.

Addendum. After this paper was sent for publication the author proved Theorem 1.1 without the restriction $r \leq 4$ and Heiko Harborth proved the conjecture 2.1.

REFERENCES

1. C. Mac-Laurin, *A second letter to Martin Folges, Esq., concerning the roots of equations with the demonstration of other rules in algebra,* Philos. Trans. 36 (1729), 59-96. 2. F. Hering, *Nested bipartite graphs,* Israel J. Math. 9 (1971), 403--417.

UNIVERSITY OF WASHINGTON SEATTLE, WASHINGTON