A GENERALIZATION OF THE ARITHMETIC-GEO-METRIC MEAN INEQUALITY AND AN APPLICA-TION TO FINITE SEQUENCES OF ZEROS AND ONES

BY FRANZ HERING*

ABSTRACT

We generalize the arithmetic-geometric mean inequality to a new class of polynomials and give a combinatorial application.

Introduction

The elementary symmetric polynomial $S_r(x_1, \dots, x_m)$ of degree r has the following property: When $x = (x_1, \dots, x_m) \ge 0$ and $\bar{x} = (x_1 + \dots + x_m)/m$, then $S_r(x_1, \dots, x_m)$ $\le S_r(\bar{x}, \dots, \bar{x})$. For r = m this is just the arithmetic-geometric mean inequality for $S_m(x_1, \dots, x_m) = x_1 \dots x_m \le ((x_1 + \dots + x_m)/m)^m = S_r(\bar{x}, \dots, \bar{x})$. The generalization to an arbitrary r is due to Mac-Laurin [1]. We prove here a similar inequality for another class of polynomials which occur in a problem of sequences of zeros and ones.

1. The inequality

M denotes always the set of integers $1, \dots, m$ and 2^{M} its powerset.

DEFINITION 1.1. When $I = \{i_1, \dots, i_r\} \in 2^M$ such that $i_1 < \dots < i_r$ holds, then I is alternating, iff i_v even is equivalent to i_{v+1} odd for $v = 1, \dots, r-1$. Then

(1.1)
$$\mathfrak{A}_{r,m} = \{I \in 2^M : I = r, I \text{ alternating}\}.$$

(1.2)
$$A_r(x_1, \cdots, x_m) = \sum \left\{ \prod_{i \in I} x_i \colon I \in \mathfrak{A}_{r,m} \right\}$$

* The work for this research was supported by the Max Kade Foundation.

Received July 14, 1970 and in revised form September 13, 1971

is the alternating polynomial of degree r in m variables. For example

	1	2	3				
	1	2			5		
	1	2					7
	1			4	5		
	1			4			7
	1					6	7
A ^{3.7} :			3	4	5		
			3	4			7
			3			6	7
					5	6	7
		2	3	4			
		2	3			6	
		2			5	6	
				4	5	6	

(The digits of each line are an element of $\mathfrak{A}_{3,7}$).

Let $\beta_{r,m}$ denote the maximum of $A_r(x_1, \dots, x_m)$ on the simplex

(1.3) $S = \{(x_1, \dots, x_m) \in \mathbb{R}^m : x_i \ge 0 \text{ for } i = 1, \dots, m, \ \sum x_i = 1\}.$

Then we prove the following

THEOREM 1.1. (i) When $r \leq 4$, then

(1.4)
$$\beta_{r,m} = \begin{cases} A_r\left(\frac{1}{m}, \dots, \frac{1}{m}\right) & \text{for } r \equiv m(2) \\ A_r\left(\frac{1}{m-1}, \dots, \frac{1}{m-1}, 0\right) & \text{for } r \equiv m(2) \end{cases}$$

(ii) When r = 3 or r = 4 and $r \equiv m(2)$, then $\beta_{r,m}$ is attained uniquely at $(1/m, \dots, 1/m)$ on S. When $r \equiv m(2)$, $r \in \{2, 3, 4\}$, then $\beta_{r,m} = \beta_{r,m-1}$ and $\beta_{r,m}$ is not attained at $(1/m, \dots, 1/m)$.

Whether the condition $r \leq 4$ may be dropped remains open. When r = m, then (1.4) is also true, it is then equivalent to the arithmetic-geometric mean inequality. We prepare the proof be several lemmas, some of them dealing mainly with combinatorial properties of $\mathfrak{A}_{r,m}$.

The cyclic permutation T of M is defined by

(1.5)
$$T(i) = \begin{cases} i + 1 & \text{for } i < m, \\ 1 & \text{for } i = m. \end{cases}$$

In general, when f is a mapping from a set A into a set B, then f develops canonically to a mapping from 2^A into 2^B and we use the same letter for this mapping. So we have for $I \subset M$

$$T(I) = \{T(i): i \in I\}$$

and for $\mathfrak{A} \subset 2^M$

$$T(\mathfrak{A}) = \{T(I) \colon I \in \mathfrak{A}\}.$$

LEMMA 1.1. $T(\mathfrak{A}_{r,m}) = \mathfrak{A}_{r,m}$ iff $r \equiv m(2)$.

PROOF. Suppose $I = \{i_1, \dots, i_r\} \in \mathfrak{A}_{r,m}$ with $i_1 < \dots < i_r$, so $i_v + i_{v+1} \equiv 1(2)$ for $v = 1, \dots, r-1$. We have trivially $T(i_v) + T(i_{v+1}) = i_v + i_{v+1} + 2 \equiv 1(2)$ for $v = 1, \dots, r-2$ and if $i_r < m$, then also for v = r-1, proving $T(I) \in \mathfrak{A}_{r,m}$ in this case. When $i_r = m$, then $T(I) \in \mathfrak{A}_{r,m}$ iff $T(m) + T(i_1) \equiv 1(2)$. Now $T(m) + T(i_1) = i_1 + 2 \equiv i_1(2)$ and $i_1 \equiv 1(2)$ iff $i_r \equiv r(2)$. This shows $T(\mathfrak{A}_{r,m}) \subset \mathfrak{A}_{r,m}$ iff $r \equiv m(2)$. From T being one-to-one on the finite set 2^M we obtain $T(\mathfrak{A}_{r,m}) = \mathfrak{A}_{r,m}$.

To $N \subset M$, $\mathfrak{N} \subset 2^M$ we define

$$\mathfrak{N}[N] = \{I \in \mathfrak{N} \colon I \cap N = \emptyset\}$$
$$\mathfrak{N}\langle N \rangle = \{U \subset M \colon U \cap N = \emptyset, U \cup N \in \mathfrak{N}\}.$$

When $N = \{n\}$, we write $\mathfrak{N}[n]$, $\mathfrak{N}\langle n \rangle$ instead of $\mathfrak{N}[\{n\}]$, $\mathfrak{N}\langle \{n\} \rangle$.

(1.6)
$$\mathfrak{N} = \mathfrak{N}[n] \cup \{U \cup \{n\} \colon U \in \mathfrak{N}\langle n \rangle\}.$$

(Here \odot means: union of disjoint sets).

The following lemma is plain:

Lemma 1.2

$$T(\mathfrak{N}[N]) = (T(\mathfrak{N}))[T(N)],$$

$$T(\mathfrak{N}\langle N\rangle) = (T(\mathfrak{N}))\langle T(N)\rangle.$$

PROOF.

$$T(\mathfrak{N}[N]) = T(\{I \in \mathfrak{N} : I \cap N = \emptyset\})$$

$$= \{J \in T(\mathfrak{N}) : T^{-1}(J) \cap N = \emptyset\}$$

$$= \{J \in T(\mathfrak{N}) : J \cap T(N) = \emptyset\}$$

$$= (T(\mathfrak{N}))[T(N)].$$

Vol. 11, 1972 ARITHMETIC-GEOMETRIC MEAN INEQUALITY

The second equation follows analogously. [] We have from Definition 1.1

(1.8)
$$\begin{cases} \mathfrak{A}_{r,m}[m] = \mathfrak{A}_{r,m-1} \\ \{T^{-1}(I) \colon I \in \mathfrak{A}_{r,m}[1]\} = \mathfrak{A}_{r,m-1} \end{cases}$$

and we want to obtain a similar result when $n \neq 1$, m in $\mathfrak{A}_{r,m}[n]$.

DEFINITION 1.2. When m > 2, we define a mapping ϕ_n of M onto $M \setminus \{m, m-1\}$ for every $n \in M$:

$$\phi_{1}(j) = \begin{cases} 1 & \text{for } j = 1, m \\ j - 1 & \text{for } j = 2, 3, \dots, m - 1 \end{cases}$$

$$\phi_{m}(j) = \begin{cases} m - 2 & \text{for } j = 1, m \\ j - 1 & \text{for } j = 2, \dots, m - 1 \end{cases}$$

$$\phi_{n}(j) = \begin{cases} j & \text{for } j = 1, \dots, n - 1 \\ n - 1 & \text{for } j = n \quad (n = 2, \dots, m - 1) \\ j - 2 & \text{for } j = n + 1, \dots, m \end{cases}$$

LEMMA 1.3. When $m \equiv r(2)$ or 1 < n < m then

$$\phi_n(\mathfrak{A}_{r,m}[n]) = \mathfrak{A}_{r,m-2}.$$

PROOF. We first assume 1 < n < m. Suppose $I \in \mathfrak{A}_{r,m}[n]$.

We observe that $\#\phi_n(I) = r$: Now $\phi_n(a) \neq \phi_n(b)$ for $a \neq b$, iff $\{a, b\} \notin \{n-1, n, n+1\}$. By hypothesis, $n \notin I$, so in order to show that $\#\phi_n(I) = r$, it suffices to show that $\{n-1, n+1\} \notin I$. But if n-1, n+1 were in *I* they would be successive elements with $(n-1) + (n+1) \equiv 0$ (2) contradicting that *I* is alternating.

When $u \in M \setminus \{n\}$, then either $\phi_n(u) = u$ or $\phi_n(u) = u-2$. Therefore, when u, $v \in M \setminus \{n\}$, then $u + v \equiv \phi_n(u) + \phi_n(v)$ (2). This proves $\phi_n(I) \in \mathfrak{A}_{r,m-2}$ and therefore $\phi_n(\mathfrak{A}_{r,m}[n]) \subset \mathfrak{A}_{r,m-2}$.

To prove the reverse inclusion, we define a mapping ψ_n from $M \setminus \{m-1, m\}$ onto $M \setminus \{n, n+1\}$ by

$$\psi_n(j) = \begin{cases} j & \text{for } j < n \\ j+2 & \text{for } j \ge n \end{cases}$$

When $J \in \mathfrak{A}_{r,m-2}$, then obviously $\psi_n(J) \in \mathfrak{A}_{r\cdot m}[n]$ and $\phi_n(\psi_n(J)) = J$. So $\phi_n(\mathfrak{A}_{r,m}[n]) = \mathfrak{A}_{r,m-2}$.

Now we assume $m \equiv r(2)$ and n = 1. We have $\phi_1 \circ T^{-1} = \phi_2$, so

$$\phi_{1}(\mathfrak{A}_{r,m}[1]) = \phi_{1}(T^{-1}(\mathfrak{A}_{r,m})[T^{-1}(2)]) \quad (\text{Lemma 1.1}) = \phi_{1}(T^{-1}(\mathfrak{A}_{r,m}[2])) \quad (\text{Lemma 1.2}) = \phi_{2}(\mathfrak{A}_{r,m}[2]) = \mathfrak{A}_{r,m-2}.$$

 $\phi_m(\mathfrak{A}_{rm}[m]) = \mathfrak{A}_{r,m-2}$ follows analogously. \Box

The following example gives $\mathfrak{A}_{3,7}[2]$ and $\phi_2(\mathfrak{A}_{3,7}[2])$:

ş	𝔐 _{3,7} [2]	$\phi_2(\mathfrak{A}_{3,7}[2])$				
1 4	4 5	1 2 3				
1 4	4 7	1 2 5				
1	67	1 4 5				
3 4	4 5	1 2 3				
3 4	4 7	1 2 5				
3	67	1 4 5				
	5 6 7	3 4 5				
4	4 5 6	2 3 4				

To every element of $\mathfrak{A}_{3,7}[2]$ its image under ϕ_2 is in the same line. Observe that ϕ_2 is not one-to-one.

LEMMA 1.4. When 1 < n < m then

$$(\mathfrak{A}_{r,m}\langle n-1\rangle)[n] = (\mathfrak{A}_{r,m}\langle n+1\rangle)[n].$$

PROOF. When $U \in (\mathfrak{A}_{r,m} \langle n-1 \rangle)$ [n], then n-1, $n \notin U$ and $U \cup \{n-1\} \in \mathfrak{A}_{r,m}$. Therefore $n+1 \in U$ is impossible, for otherwise n-1 and n+1 would be subsequent elements of $U \cup \{n-1\}$ and $(n-1) + (n+1) \equiv 0(2)$. This is a contradiction to $U \cup \{n-1\} \in \mathfrak{A}_{r,m}$. From $n+1 \notin U$ we obtain $U \cup \{n+1\} \in \mathfrak{A}_{r,m}$, too i.e. $U \in (\mathfrak{A}_{r,m} \langle n+1 \rangle)$ [n]. The inverse relation follows analogously.

Example A _{3,7} <1>			1		A3,7	〈 3〉			$(\mathfrak{A}_{3,7}\langle 1\rangle)[2] = (\mathfrak{A}_{3,7}\langle 3\rangle)[2]$
2 3			-1	2					4 5
2	5				4	5			4 7
2			7		4			7	6 7
4	45						6	7	
4	1		7	2	4				
		6	7	2			6		

Vol. 11, 1972 ARITHMETIC-GEOMETRIC MEAN INEQUALITY

COROLLARY. When $m \ge 3$ and $r \equiv m(2)$, then

(1.7)
$$(\mathfrak{A}_{r,m}\langle T^{-1}(n)\rangle)[n] = (\mathfrak{A}_{r,m}\langle T(n)\rangle)[n] \text{ for every } n \in M.$$

Only the cases n = 1 and n = m are not covered by the previous lemma.

PROOF.
$$(\mathfrak{A}_{r,m} \langle T^{-1}(n) \rangle)[n]$$

= $((T^{n-2}(\mathfrak{A}_{r,m})) \langle T^{-1}(n) \rangle)[n]$ (Lemma 1.1)
= $((T^{n-2}(\mathfrak{A}_{r,m})) \langle T^{n-2}(1) \rangle)[T^{n-2}(2)]$ (1.5)
= $(T^{n-2}(\mathfrak{A}_{r,m} \langle 1 \rangle))[T^{n-2}(2)]$ (Lemma 1.2)
= $T^{n-2}((\mathfrak{A}_{r,m} \langle 1 \rangle)[2])$ (Lemma 1.2)
= $T^{n-2}((\mathfrak{A}_{r,m} \langle 3 \rangle)[2])$ (Lemma 1.4)
= $((T^{n-2}(\mathfrak{A}_{r,m} \langle 3 \rangle))[T^{n-2}(2)]$ (Lemma 1.2)
= $((T^{n-2}(\mathfrak{A}_{r,m})) \langle T^{n-2}(3) \rangle)[T^{n-2}(2)]$ (Lemma 1.2)
= $((T^{n-2}(\mathfrak{A}_{r,m})) \langle T(n) \rangle)[n]$ (1.5)
= $(\mathfrak{A}_{r,m} \langle T(n) \rangle)[n]$. (Lemma 1.1)

The condition $r \equiv m(2)$ in the corollary is necessary. For example

$$(\mathfrak{A}_{3,6}\langle 6\rangle)[1] = \{\{2,3\},\{2,5\},\{4,5\}\}$$

$$\neq (\mathfrak{A}_{3,6}\langle 2\rangle)[1] = \{\{3,4\},\{3,6\},\{5,6\}\}.$$

The following lemma is obtained analogously to Lemma 1.4 but a little more complicated.

LEMMA 1.5. When
$$m \ge 4$$
, $r \ge 2$ and $1 \le n \le m-3$, then
 $(\mathfrak{A}_{r,m} < \{n, n+1\}) [n+2] = (\mathfrak{A}_{r,m} < \{n+2, n+3\}) [n+1]$

PROOF. Suppose $V \in (\mathfrak{A}_{r,m} \setminus \{n, n+1\})$ [n+2]. Then $\{n, n+1, n+2\} \cap V = \emptyset$ and $V \cup \{n, n+1\} \in \mathfrak{A}_{r,m}$.

The assumption $n + 3 \in V$ gives us again (as in the proof of Lemma 1.4) a contradiction to $V \cup \{n, n+1\} \in \mathfrak{A}_{r,m}$. Therefore $V \cup \{n+2, n+3\} \in \mathfrak{A}_{r,m}$, showing $V \in (\mathfrak{A}_{r,m} \setminus \{n+2, n+3\})$ [n+1]. The inverse relation needs no new argument. \Box

The following corollary follows by a similar calculation as the corollary to Lemma 1.4.

COROLLARY. When $m \ge 4$, $r \ge 2$, $m \equiv r(2)$ then we have

(1.8)
$$(\mathfrak{A}_{r,m} \langle \{n, T(n)\} \rangle) [T^2(n)] = (\mathfrak{A}_{r,m} \langle \{T^2(n), T^3(n)\} \rangle) [T(n)].$$

for every $n \in M$. \square

When $I \subset M$, then min I is the smallest element of I. Then we define

(1.9)
$$\begin{cases} a_{r,m} = \# \mathfrak{A}_{r,m}, \\ b_{r,m} = \# \{I \in \mathfrak{A}_{r,m} : \min I \equiv 1(2)\}, \\ c_{r,m} = \# \{I \in \mathfrak{A}_{r,m} : \min I \equiv 0(2)\}. \end{cases}$$

LEMMA 1.6. $c_{r,m} = b_{r,m-1}$ for m > 1. PROOF. $T^{-1}({I \in \mathfrak{A}_{r,m} : \min I \equiv 0(2)}) = {J \in \mathfrak{A}_{r,m-1} : \min I \equiv 1(2)}, \text{ therefore}$ $c_{r,m} = \# (T^{-1}(\{I \in \mathfrak{A}_{r,m} : \min I \equiv 0(2)\}))$ $= \# (\{J \in \mathfrak{A}_{r,m-1} : \min I \equiv 1(2)\})$ $= b_{r,m-1}$ LEMMA 1.7. $b_{r,m} = b_{r,m-2} + b_{r-1,m-1}$ for $2 \le r \le m-2$. $b_{r,m} = \# \{I \in \mathfrak{A}_{r,m} : \min I = 1\}$ PROOF. + # { $I \in \mathfrak{A}_{r_m}$: min $I \ge 3$, min I = 1(2)} = # { $V \subset M$: 1 $\notin V$, $V \cup$ {1} $\in \mathfrak{A}_{r,m}$ } + # $T^{-2}(\{I \in \mathfrak{A}_{r,m} : \min I \ge 3, \min I \equiv 1(2)\})$ $= \# \{ V \in \mathfrak{A}_{r-1:m} : \min V \equiv 0(2) \}$ + # { $J \in \mathfrak{A}_{r,m-2}$: min $J \equiv 1(2)$ }. $= c_{r-1,m} + b_{r,m-2}$ $= b_{r-1,m-1} + b_{r,m-2}$. (Lemma 1.6) $a_{r,m} = \binom{m - \left[\frac{1}{2}(m - r + 1)\right]}{r} + \binom{m - \left[\frac{1}{2}(m - r + 2)\right]}{r}.$ Lemma 1.8.

(As usual $\binom{u}{v} = 0$ for u < v and [x] denotes the greatest integer less than or equal to x).

PROOF. We show by induction:

(1.10)
$$b_{r,m} = \binom{m - \left[\frac{1}{2}(m - r + 1)\right]}{r}.$$

(1.10) holds for r = 1, r = m - 1, r = m. Using Lemma 1.7 and the induction

hypothesis we obtain (1.10) and the lemma follows then from (1.10), Lemma 1.6 and $a_{r,m} = b_{r,m} + c_{r,m}$.

COROLLARY.

$$A_r\left(\frac{1}{m},\dots,\frac{1}{m}\right) = \frac{1}{m^r} \left[\binom{m - \left[\frac{1}{2}(m-r+1)\right]}{r} + \binom{m - \left[\frac{1}{2}(m-r+2)\right]}{r} \right].$$

Lemma 1.9.

$$\left(\frac{1+1/n}{1-1/n}\right)^s < \frac{1+s/n}{1-s/n} \text{ for } 2 \leq s \leq n.$$

PROOF. When s = 1, equality holds. Now suppose s > 1 and we have

$$\left(\frac{1+1/n}{1-1/n}\right)^{s-1} \le \frac{1+\frac{s-1}{n}}{1-\frac{s-1}{n}}$$

by induction hypothesis. Then

$$\left|\frac{1+1/n}{1-1/n}\right|^{s} \leq \frac{\left(1+\frac{s-1}{n}\right)\left(1+\frac{1}{n}\right)}{\left(1-\frac{s-1}{n}\right)\left(1-\frac{1}{n}\right)} \\ = \frac{1+\frac{s}{n}+\frac{s-1}{n^{2}}}{1-\frac{s}{n}+\frac{s-1}{n^{2}}} < \frac{1+\frac{s}{n}}{1-\frac{s}{n}}.$$

Define

(1.11)
$$C_r(m) = A_r\left(\frac{1}{m}, \cdots, \frac{1}{m}\right).$$

LEMMA 1.10. When $2 < r \le m$, $m \equiv r(2)$, then $C_r(m) < C_r(m+2)$.

PROOF. We have from $r \equiv m(2)$, the corollary to Lemma 1.8 and (1.11)

$$C_{\mathbf{r}}(m) = \frac{1}{m^{\mathbf{r}}} \left[\binom{\frac{1}{2}(m+r)}{r} + \binom{\frac{1}{2}(m+r-2)}{r} \right].$$

A straightforward but somewhat tedious calculation gives

$$C_{r}(m+2) - C_{r}(m) = \frac{1}{2^{r-1}r!} \prod_{\nu=1}^{r-2} (m+r-2\nu) \left\{ \frac{m+r}{(m+2)^{r-1}} - \frac{m-r+2}{m^{r-1}} \right\}$$

So all we have to show, that $\{\cdots\}$ is positive. This follows from Lemma 1.9 with n = m + 1 and s = r - 1. \Box

We are now prepared to prove our theorem. However for a later application we first state the following

LEMMA 1.11. When $2 < r \leq m$, $m \equiv r(2)$, then

$$C_r(m) < \frac{1}{(m+3)^r}$$
 $\underbrace{A_r(1,\dots,1,2)}_{m+1}$.

We omit the proof, which is a straightforward but tedious calculation.

PROOF OF THE THEOREM. When $\mathfrak{A} \subset 2^M$, $x \in \mathbb{R}^m$ we define the polynomial $P(\mathfrak{A}, \cdot)$ by

(1.12)
$$P(\mathfrak{A}, x) = \sum \left\{ \prod_{i \in I} x_i \colon I \in \mathfrak{A} \right\}$$

(As usual the product over the empty index set is 1). When $\mathfrak{A} = \mathfrak{B} \odot \mathfrak{C}$, then $P(\mathfrak{A}, x) = P(\mathfrak{B}, x) + P(\mathfrak{C}, x)$. Therefore by (1.6)

$$P(\mathfrak{A}, x) = P(\mathfrak{A}[i], x) + x_i P(\mathfrak{A}\langle i \rangle, x).$$

For the alternating polynomial we obtain $A_r(x_1, \dots, x_m) = P(\mathfrak{A}_{r,m}, x)$.

When r = 1, then our theorem is trivial, for $P(\mathfrak{A}_{r,m}, x) \equiv 1$ on S. When r = 2, then

$$A_2(x_1, \cdots, x_m) = \left(\sum_{i \equiv 0(2)} x_i\right) \left(\sum_{j \equiv 1(2)} x_j\right)$$

and this product is maximal on S iff

(1.13)
$$\sum_{i \equiv 0(2)} x_i = \sum_{j \equiv 1(2)} x_j.$$

So $x_1 = \cdots = x_m = 1/m$ is a solution of (1.13) iff $m \equiv 0(2)$. When $r \neq m(2)$, then $(1/(m-1), \cdots, 1/(m-1), 0)$ is a boundary point of S which solves (1.13). Therefore

$$A_{2}\left(\underbrace{\frac{1}{m}, \cdots, \frac{1}{m}}_{m}\right) < \beta_{2m} = A_{2}\left(\underbrace{\frac{1}{m-1}, \cdots, \frac{1}{m-1}, 0}_{m}\right)$$
$$= A_{2}\left(\underbrace{\frac{1}{m-1}, \cdots, \frac{1}{m-1}}_{m-1}\right) = \beta_{2,m-1}.$$

This proves the case r = 2 of our theorem.

Now suppose $r \ge 3$. We build the Lagrange-function

Vol. 11, 1972 ARITHMETIC-GEOMETRIC MEAN INEQUALITY

(1.14)
$$L(x,\lambda) = P(\mathfrak{A}_{r,m},x) + \lambda(1-\langle e,x\rangle).$$

(Here $\langle e, x \rangle$ is the scalar product of $e = (1, \dots, 1)$ and x).

Using (1.6) we have

$$\frac{\partial}{\partial x_{n-1}} P(\mathfrak{A}_{r,m}, x) = P(\mathfrak{A}_{r,m}\langle n-1\rangle, x)$$

$$= P((\mathfrak{A}_{r,m}\langle n-1\rangle)[n], x) + x_n P(\mathfrak{A}_{r,m}\langle\{n-1,n\}\rangle, x),$$

$$\frac{\partial}{\partial x_{n+1}} P(\mathfrak{A}_{r,m}, x) = P(\mathfrak{A}_{r,m}\langle n+1\rangle, x)$$

$$= P((\mathfrak{A}_{r,m}\langle n+1\rangle)[n], x) + x_n P(\mathfrak{A}_{r,m}\langle\{n+1,n\}\rangle, x).$$

For a stationary point $(x_1^*, \dots, x_m^*, \lambda^*)$ of L we obtain

(1.15)
$$\frac{\partial}{\partial x_n} P(\mathfrak{A}_{r,m}, x^*) = \lambda^* \text{ for all } n \in M.$$

The combinatorial preparations serve now to handle the equations (1.15). When 1 < n < m we get from Lemma 1.4

$$x_n^* P(\mathfrak{A}_{r,m} \langle \{n-1,n\}\rangle, x^*) = x_n^* P(\mathfrak{A}_{r,m} \langle \{n+1,n\}\rangle, x^*).$$

When x^* is an interior point of S, we have $x_n > 0$. So we obtain for every n with $1 \le n < m$

(1.16)
$$P(\mathfrak{A}_{r,m}\langle\{1,2\}\rangle,x^*) = P(\mathfrak{A}_{r,m}\langle\{n,n+1\}\rangle,x^*).$$

We have from (1.6) for $2 \leq n \leq m-2$ again

$$P(\mathfrak{A}_{r,m} \langle \{n-1,n\} \rangle, x^*) = P((\mathfrak{A}_{r,m} \langle \{n-1,n\} \rangle) [n+1], x^*) + x_{n+1}^* P(\mathfrak{A}_{r,m} \langle \{n-1,n,n+1\} \rangle, x^*),$$

$$P(\mathfrak{A}_{r,m} \langle \{n+1,n+2\} \rangle, x^*) = P((\mathfrak{A}_{r,m} \langle \{n+1,n+2\} \rangle) [n], x^*) + x_n^* P(\mathfrak{A}_{r,m} \langle \{n,n+1,n+2\} \rangle, x^*).$$

This gives us together with (1.16) and Lemma 1.5

(1.17)
$$x_n^* P(\mathfrak{A}_{r,m} \langle \{n, n+1, n+2\} \rangle, x^*) = x_{n+1}^* P(\mathfrak{A}_{r,m} \langle \{n-1, n, n+1\} \rangle, x^*)$$
.

Now we assume r = 3. Then $\mathfrak{A}_{3,m} \langle \{n, T(n), T^2(n)\} \rangle = \emptyset$ for every $n \in M$, so $P(\mathfrak{A}_{3,m} \langle \{n, T(n), T^2(n)\} \rangle) = 1$. From (1.17) therefore it follows $x_2^* = \cdots = x_{m-1}^*$. When *m* odd, then (1.8) gives us $x_1^* = x_2^* = \cdots = x_{m-1}^* = x_m^* = 1/m$.

Returning to the general case we obtain from (1.17) for $r \ge 3$, $2 \le n \le m-3$ with n + 1 instead of n F. HERING

(1.18)
$$x_{n+1}^* P(\mathfrak{A}_{r,m} \langle \{n+1, n+2, n+3\} \rangle, x^*) = x_{n+2}^* P(\mathfrak{A}_{r,m} \langle \{n, n+1, n+2\} \rangle, x^*).$$

It follows from (1.17) and (1.18)

$$\begin{aligned} x_{n+2}^* x_{n+1}^* P(\mathfrak{A}_{r,m} \langle \{n-1, n, n+1\} \rangle, x^*) &= x_{n+2}^* x_n^* P(\mathfrak{A}_{r,m} \langle \{n, n+1, n+2\} \rangle, x^*) \\ &= x_n^* x_{n+1}^* P(\mathfrak{A}_{r,m} \langle \{n+1, n+2, n+3\} \rangle, x^*). \end{aligned}$$

Therefore, when x^* is an interior point of S we obtain

(1.19) $x_{n+2}^* P(\mathfrak{A}_{r,m} \langle \{n-1, n, n+1\} \rangle, x^*) = x_n^* P(\mathfrak{A}_{r,m} \langle \{n+1, n+2, n+3\} \rangle, x^*).$ Now suppose r = 4. Then

$$\mathfrak{A}_{4,m}\langle \{n-1,n,n+1\}\rangle = \{i \in M \colon i \equiv n(2), i \neq n\}.$$

Therefore (1.19) becomes

$$x_{n+2}^* \sum \{x_i^*: i \equiv n(2), i \neq n\} = x_n^* \sum \{x_i^*: i \equiv n(2), i \neq n+2\} \text{ or equivalently}$$
$$(x_{n+2}^* - x_n^*)(x_{n+2}^* + x_n^*) = (x_n^* - x_{n+2}^*) \ (\sum \{x_i^*: i \equiv n(2), i \neq n, n+2\}).$$

So, when $x_{n+2}^* \neq x_n^*$, then at least one x_i^* , $i \equiv n(2)$ must be negative. Therefore we have reached the conclusion that $x_n^* = x_{n+2}^*$ or more general $x_i^* = x_j^*$ when $2 \leq i, j \leq m-1$ and when i, j are both even or both odd. Now suppose m even. Then $r \equiv m(2)$ and so (1.8) gives us $x_1^* = x_3^*$ and $x_{m-2}^* = x_m^*$, too. With $a = x_1^*$, $b = x_2^*$ we have $x^* = (a, b, a, \dots, b)$ where a + b = 2/m.

In general, when r is even, then $\# \{i \in I : i \text{ odd}\} = \# \{i \in I : i \text{ even}\}$ for every $I \in \mathfrak{A}_{r,m}$. Therefore we have

$$\prod_{i \in I} x_i^* = a^{r/2} \cdot b^{r/2} \le \left(\frac{a^{r/2} + b^{r/2}}{2}\right)^2$$

with equality iff a = b = 1/m.

We put the results together:

Suppose r = 3 and m odd. When (x^*, λ^*) is a stationary point of the Lagrange-function L and x^* is an interior point of S, then $x^* = (1/m, \dots, 1/m)$.

Suppose r = 4, *m* even and $(x_1^*, x_2^*, \dots, x_{m-1}^*, x_m^*, \lambda^*) = (x^*, \lambda^*)$ is a stationary point of *L* with x^* in the interior of *S*. Then $x_1^* = x_3^* = \dots = x_{m-1}^*$, $x_2^* = x_4^*$ $= \dots = x_m^*$. Furthermore, when *y* is a point of the interior of *S* of the form $y = (a, b, \dots, a, b)$ with $a \neq 1/m$, then $A_r(y) < A_r(1/m, \dots, 1/m)$.

Now we prove that in these cases (i.e. for $r = 3, 4, r \equiv m(2)$)

$$A_r(u_1, \cdots, u_m) < A_r(1/m, \cdots, 1/m)$$

holds when $u = (u_1, \dots, u_m)$ is a boundary point of S. We apply induction on m - r. Indeed, when m = r, this inequality is just the arithmetic-geometric mean inequality for r = m = 3, 4. Now suppose m - r > 0. To every $j \in M$ we define a mapping f_j of \mathbb{R}^m into \mathbb{R}^{m-2} using definition 1.2 as follows: To

$$x = (x_1, \dots, x_m) \in \mathbb{R}^m, \ k \in \{1, 2, \dots, m\}$$

we define

$$y_k = \sum \{ x_p \colon p \in M, \, \phi_j(p) = k \}$$

and $f_j(x) = (y_1, \dots, y_{m-2})$. So for example

$$f_3(x) = (x_1, x_2 + x_3 + x_4, x_5, \dots, x_{m-2}).$$

Now suppose $u = (u_1, \dots, u_{j-1}, 0, u_{j+1}, \dots, u_m) \in S$ is a boundary point of S, so $A_r(u) = P(\mathfrak{A}_{r,m}[j], u)$ and also suppose that $I \in \mathfrak{A}_{r,m}[j]$ and $v = (v_1, \dots, v_{m-2}) = f_j(u)$.

When c and d are different elements of $M \setminus \{j\}$ with $\phi_j(c) = \phi_j(d)$, then $\{c, d\}$ = $\{T^{-1}(j), T(j)\}$. We have $\{T^{-1}(j), T(j)\} \notin I$ for every $I \in \mathfrak{A}_{r,m}[j]$, for $T^{-1}(j)$, T(j) would be subsequent elements of I of the same parity. Therefore ϕ_j is oneto-one on every $I \in \mathfrak{A}_{r,m}[j]$, hence $v_{\phi_j(p)} = u_p$ for every $p \in I$ and so trivially

$$\prod_{p \in I} u_p = \prod_{k \in \phi_i(I)} v_k.$$

We define a mapping g on $\{I \in \mathfrak{A}_{r,m}[j]: T^{-1}(j) \in I\}$ by $g(I) = (I \setminus \{T^{-1}(j)\}) \cup \{T(j)\}$. Then $g(I) \in \mathfrak{A}_{r,m}[j]$, too and g maps $\{I \in \mathfrak{A}_{r,m}[j]: T^{-1}(j) \in I\}$ one-to-one onto $\{K \in \mathfrak{A}_{r,m}[j]: T(j) \in K\}$. This gives us

$$\prod_{p \in I} u_p + \prod_{s \in g(I)} u_s = (u_{T^{-1}(j)} + u_{T(j)}) \quad \prod \{ u_t : t \in I, \ t \neq T^{-1}(j) \} = \prod_{k \in \phi_j(I)} v_k.$$

So finally using Lemma 1.3 we obtain

$$P(\mathfrak{A}_{r,m}[j], u) = \sum \left\{ \prod_{k \in \phi_j(I)} v_k : I \in \mathfrak{A}_{r,m}[j] \right\}$$
$$= \sum \left\{ \prod_{k \in K} v_k : K \in \phi_j(\mathfrak{A}_{r,m}[j]) \right\}$$
$$= \sum \left\{ \prod_{k \in K} v_k : K \in \mathfrak{A}_{rm-2} \right\}$$
$$= P(\mathfrak{A}_{r,m-2}, v) = A_{r,m-2}(v_1, \cdots, v_{m-2}).$$

Trivially $v_1 + \cdots + v_{m-2} = 1$, $v_i \ge 0$ for $i = 1, \cdots, m-2$. Therefore the induction hypothesis leads to

$$A_{r \ m-2}(v_1, \cdots, v_{m-2}) \leq A_r\left(\frac{1}{m-2}, \cdots, \frac{1}{m-2}\right) = C_r(m-2).$$

From Lemma 1.10 we have therefore

 $A_{r,m}(u_1, \dots, u_m) \leq C_r(m-2) < C_r(m)$ for every point on the boundary of S.

Therefore $\beta_{r,m}$ is not attained at the boundary of S and is consequently attained at interior points x^* of S only, for which (x^*, λ^*) is a stationary point of L. This proves our theorem in the case $r \equiv m(2)$.

Now suppose $r \neq m(2)$, r = 3 or r = 4 and $(x_1, \dots, x_m) \in S$. Then

$$\begin{aligned} A_r(x_1, \dots, x_m) &= A_r(x_1, \dots, x_m, 0) = P(\mathfrak{A}_{r, m+1}, (x_1, \dots, x_m, 0)) \\ &= P(\mathfrak{A}_{r, m+1}[m+1], (x_1, \dots, x_m, 0)) = P(\mathfrak{A}_{r, m-1}, f_{m+1}(x_1, \dots, x_m, 0)) \\ &= P(\mathfrak{A}_{r, m}, (x_1 + x_m, x_2, \dots, x_{m-1})) = A_r(x_1 + x_m, x_2, \dots, x_{m-1}) \end{aligned}$$

so

(1.20)
$$A_r(x_1, \cdots, x_m) = A_r(x_1 + x_m, x_2, \cdots, x_{m-1}) \leq \beta_{r,m-1}.$$

This shows $\beta_{r,m} \leq \beta_{r,m-1}$. The inverse relation is trivial. We have

$$f_m\left(\underbrace{\left(\frac{1}{m},\cdots,\frac{1}{m},0\right)}_{m+1}\right) = \underbrace{\left(\frac{1}{m},\cdots,\frac{1}{m},\frac{2}{m}\right)}_{m-1}$$

and with $x = (1/m, \dots, 1/m)$ the calculation above gives us therefore

$$A_{r}\left(\frac{1}{m}, \dots, \frac{1}{m}\right) = P\left(\mathfrak{A}_{r,m+1}, f_{m}\left(\frac{1}{m}, \dots, \frac{1}{m}, 0\right)\right)$$
$$= P\left(\mathfrak{A}_{r,m-1}, \underbrace{\left(\frac{1}{m}, \dots, \frac{1}{m}, \frac{2}{m}\right)}_{m-1}\right)$$
$$< P\left(\mathfrak{A}_{r,m}, \underbrace{\left(\frac{1}{m-1}, \dots, \frac{1}{m-1}\right)}_{m-1}\right) = \beta_{r,m-1} = \beta_{r,m}$$

This completes the proof of the theorem. \Box

COROLLARY TO THEOREM 1.1 When $r \in \{2, 3, 4\}$, then

(1.21)
$$A_r(x_1, \dots, x_m) \leq A_r(\bar{x}, \dots, \bar{x})$$

for all (x_1, \dots, x_m) with $x_i \ge 0$ for $i = 1, \dots, m$ iff $r \equiv m(2)$.

This follows immediately from theorem 1.1(i) and from A_r being homogenous of degree r.

For the alternating polynomial (1.2) one may also use the arithmetic-geometric

mean inequality separately for every term. This leads for $x = (x_1, \dots, x_m) \ge 0$ to

(1.22)
$$A_r(x_1, \cdots, x_m) \leq \sum \left\{ \left(\sum_{i \in I} \frac{x_i}{r} \right)^r I \in \mathfrak{A}_{r,m} \right\}$$

However, the inequality (1.21) gives in general a sharper estimate. For example when r = 3, m = 5, $x_i = i$ for $i = 1, \dots, 5$ then $A_r(1, 2, \dots, 5) = 120$, the right side of (1.21) is 135, the right side of (1.22) is 155.

2. An application to a combinatorial problem

DEFINITION 2.1. When $d = (d_1, \dots, d_l)$ is a binary number, then a subsequence of d

$$\delta = (d_{i_1}, \cdots, d_{i_n})$$

is called *alternating*, if $d_{i_v} + d_{i_{v+1}} = 1$ for $v = 1, \dots, r-1$. Then

$$a_r(d) = \# \{ \delta = (d_{i_1}, \dots, d_{i_l}) : \delta \text{ [alternating]} \}$$

When D_t is the set of all binary numbers with t digits we define

$$\alpha_{\mathbf{r},\mathbf{t}} = \max\left\{a_{\mathbf{r}}(d) \colon d \in D_{\mathbf{t}}\right\}.$$

When $d = (0, 1, \dots) \in D_t$ is the binary number which forms an alternating sequence itself and which has 0 as its first digit, then we conjecture:

(2.1)
$$\alpha_{r,t} = a_r(d) \text{ for every } r = 1, \dots, t.$$

This conjecture is near at hand. However, we were not able to solve it in general.

We pointed out in [2], that (2.1) has a graph theoretical meaning, too. The following definitions 2.2,3 and Lemma 2.1 which prepare theorem 2.1 are essentially the same as in [2].

DEFINITION 2.2. Suppose $M(t) = \{1, 2, \dots, t\}, d \in D_t, p, q \in M(t), p \leq q$. Then p, q are *d*-equivalent iff $d_p = d_{p+1} = \dots = d_q$. The equivalence classes are the blocks of d. When $\delta = (d_{i_1}, \dots, d_{i_r}), \delta^* = (d_{j_1}, \dots, d_{j_r})$ are subsequences of d, then δ, δ^* are equivalent, iff r = s and i_v, j_v are d-equivalent for $v = 1, \dots, r$.

It is plain that, when p,q are not d-equivalent with p < q and when q, q^* are d-equivalent, then $p < q^*$, too. Therefore the natural order devolves upon blocks of d.

DEFINITION 2.3. Suppose $d \in D_t$ has the sequence of blocks

$$(N_1, \cdots, N_m), N_1 < \cdots < N_m$$

a) When $\# N_i = n_i$, then

$$v(d) = (n_1, \cdots, n_m)$$

is the partition of d.

b) f_d is the mapping of $M(t) = \{1, \dots, t\}$ onto $M = \{1, \dots, m\}$ defined by

 $i \in N_{f_d(i)}$.

Obviously the partition v(d) of d is a partition of t, i.e. is an ordered sequence of positive integers n_i with $n_1 + \cdots + n_m = t$. We write 0' = 1, 1' = 0 and to $d = (d_1, \cdots, d_m)$ then $d' = (d'_1, \cdots, d'_m)$. When v is any partition of t, then there exist exactly two binary numbers d, $d^* \in D_t$ with $v(d) = v(d^*) = v$ and here $d^* = d'$. We have $a_r(d) = a_r(d')$ for every $d \in D_t$. So when $\alpha_{r,t} = a_r(d)$, then $\alpha_{r,t} = a_r(d')$, too.

LEMMA 2.1. For every $d \in D_t$ with $v(d) = (n_1, \dots, n_m)$ we have

$$a_r(d) = A_r(n_1, \cdots, n_m)$$

PROOF. When $\delta = (d_{j_1}, \dots, d_{j_r})$ is a subsequence of d, then the number of sequences equivalent with δ is

$$n_{f_d(j_1)} \cdot \cdots \cdot n_{f_d(j_j)}$$

Now δ is alternating iff $f_d(j_v) + f_d(j_{v+1}) \equiv 1(2)$ for $v = 1, \dots, r-1$, i.e. iff $\{f_d(j_1), \dots, f_d(j_r)\} \in \mathfrak{A}_{r,m}$. This gives us

$$\{\delta = (d_{i_1}, \dots, d_i) : \delta \text{ alternating}\}$$
$$= \sum \left\{ \prod_{v=1}^r n_{f_d(j_1)} : \{f_d(j_1), \dots, \{f_d(j_r)\} \in \mathfrak{A}_{r,m} \right\}$$
$$= \sum \left\{ \prod_{i \in I} n_i : I \in \mathfrak{A}_{r,m} \right\}$$
$$= A_r(n_1, \dots, n_m). \square$$

We use Theorem 1.1 for proving the conjecture (2.1) when r = 1, 2, 3, 4.

THEOREM. 2.1. When $r \leq 4$, then

$$\alpha_{\mathbf{r},\mathbf{t}} = a_{\mathbf{r}}(d).$$

When r = 3, 4, then $\alpha_{r,t}$ is attained only for d or d' iff $r \equiv t(2)$.

PROOF. Suppose $d \in D_t$ has the partition $v(d) = (n_1, \dots, n_m)$. We have to regard several cases separately.

1) r = 1. This case follows from $a_1(d) = t$ for every $d \in D_t$.

2) r = 2. It is

Vol. 11, 1972

$$\left[\frac{t+1}{2}\right] \cdot \left[\frac{t}{2}\right] = \max \{u \cdot v : u, v \text{ positive integers, } u+v=t\}.$$

With

$$u(d) = \sum \{n_i : i \text{ odd} \}$$
$$g(d) = \sum \{n_j : j \text{ even} \}$$

we have

$$a_2(d) = u(d) \cdot g(d)$$

and therefore

$$\max\{a_2(d): d \in D_t\} \leq \left[\frac{t+1}{2}\right] \cdot \left[\frac{t}{2}\right].$$

It is $u(d) = \left[\frac{t+1}{2}\right]$, $g(d) = \left[\frac{t}{2}\right]$,

proving the case r = 2.

3) $r = 3, 4, t \equiv r(2)$. Then by the corollary to Theorem 1.1:

$$a_r(d) = A_r(n_1, \dots, n_m) = A_r(n_1, \dots, n_m, \underbrace{0, \dots, 0}_{t-m})$$
$$\leq A_r(\underbrace{1, \dots, 1}_{t}) = a_r(d).$$

Here equality holds iff m = t, equivalently iff $n_1 = \cdots = n_m = 1$ i.e., iff $d = \tilde{d}$ or $d = \tilde{d'}$.

4)
$$r = 3, 4, r \neq t(2), m \leq t - 3$$
. Then
 $a_r(d) = A_r(n_1, \dots, n_m) = A_r(n_1, \dots, n_m, 0, \dots, 0)$
 $\leq A_r\left(\frac{t}{t-3}, \dots, \frac{t}{t-3}\right)$ (corollary to Theorem 1.1)
 $= t^r C_r(t-3)$ (1.11)
 $< A_r(\underbrace{1, \dots, 1, 2}_{t-1})$ (Lemma 1.11)
 $= A_r(\underbrace{1, \dots, 1}_{t})$ (1.20)
 $= a_r(\tilde{d}).$

5) $r = 3, 4, r \neq t(2), m = t - 2$. Here $r \neq m(2)$ and therefore with (1.20)

$$a_r(d) = A_r(n_1, \dots, n_m) = A_r(n_1 + n_m, n_2, \dots, n_{m-1})$$

There exists a $\hat{d} \in D_{m-1}$ with $v(\hat{d}) = (n_1 + n_m, n_2, \dots, n_{m-1})$, so $a_r(d) = a_r(\hat{d})$. From part 4 of this proof we obtain $a_r(\hat{d}) < a_r(\hat{d})$, showing

$$a_{\mathbf{r}}(d) < a_{\mathbf{r}}(d)$$

6) $r = 3, 4, r \neq t(2), m = t - 1$. Here exists exactly one $j \in M$ with $n_j = 2$ and it is $n_i = 1$ for every $i \in M \setminus \{j\}$, so

$$a_r(d) = A_r(1, \dots, 2, \dots, 1).$$

From $r \equiv m(2)$, Lemma 1.1 and (1.12) immediately follows

$$A_r(1, \dots, 2, \dots, 1) = A_r(2, 1, \dots, 1).$$

From (1.20) we obtain

$$A_{r}(\underbrace{2,1,\cdots,1}_{t-1}) = A_{r}(\underbrace{1,\cdots,1}_{t}) = a_{r}(\bar{d}),$$

so together

$$a_r(d) = a_r(\tilde{d}),$$

completing the proof. \Box

The conjecture 2.1 may also be verified directly when m - r = 0, 1, 2.

Addendum. After this paper was sent for publication the author proved Theorem 1.1 without the restriction $r \leq 4$ and Heiko Harborth proved the conjecture 2.1.

References

 C. Mac-Laurin, A second letter to Martin Folges, Esq., concerning the roots of equations with the demonstration of other rules in algebra, Philos. Trans. 36 (1729), 59-96.
 F. Hering, Nested bipartite graphs, Israel J. Math. 9 (1971), 403-417.

UNIVERSITY OF WASHINGTON SEATTLE, WASHINGTON