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ABSTRACT 

We generalize the arithmetic-geometric mean inequality to a new class of 
polynomials and give a combinatorial application. 

Introduction 

The e lementary  symmetr ic  po lynomia l  Sr(Xt, "",  Xm) of  degree r has the following 

proper ty :  When  x = (xt ,  " ' ,  Xm) > 0 and Yc = (xt +""  + xm)/m, then Sr(XD"', xm) 

< S,(~, "" ,~) .  For  r = m this is just  the ar i thmet ic-geometr ic  mean  inequali ty 

for  Sm(xt ," ' ,  xm) = Xt "" Xm < ((Xl + "'" + Xm)/m) m = Sr(~, "", ~). The  general iza-  

t ion to an arbi t rary  r is due to Mac-Laur in  [1]. We prove  here a similar inequali ty 

for  ano ther  class of  polynomials  which occur in a p rob lem of  sequences of  zeros 

and ones. 

1. The inequality 

M denotes always the set o f  integers 1, . . . ,  m and 2 u its powerset .  

DEFINITION 1.1. When  I = {it, "",  i,} e 2 u such that  it < "" < ir holds, then I 

is alternating, iff iv even is equivalent  to iv+l odd for  v = 1, . . . , r  - 1. Then  

(1.1) %.m = { l e  2U: I = r, I a l ternat ing}.  

(1.2) A r ( X l , ' " , X , ) =  ~ { H  X,: I t  %,~} 
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is the alternating polynomial of degree r in m variables. For example 

9.[3. 7 : 
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(The digits of each line are an element of  ~3,7). 

Let fl,,m denote the maximum of A,(x 1, ..., x,,) on the simplex 

(1.3) S = { ( x , , . . . , x , , ) e R ' n : x i > O f o r i = l , , . . , m ,  Y~x~ = 1}. 

Then we prove the following 

THEOREM 1.1. (i) When r <= 4, then 

f A ,  1 1 (m '  ' m )  for r-= m(2) 

A, - ]" ' m - -i-' 0 for r %% m(2) 

(ii) When r = 3 or r = 4 and r - m ( 2 ) ,  then fl,,,, is attained uniquely at 

( l /m , . . . , l /m )  on S. When r~-m(2), re{2,3,4},  then ~,,,,=~,,,,-1 and 3r,,, is 

not attained at (1/m,.. . ,  1/m). 

Whether the condition r =< 4 may be dropped remains open. When r = m, 

then (1.4) is also true, it is then equivalent to the arithmetic-geometric mean 

inequality. We prepare the proof be several lemmas, some of them dealing mainly 

with combinatorial properties of 9i,,,. 

The cyclic permutation T of M is defined by 
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i + 1 for  i < m ,  

(1.5) T(i) = 1 for  i = m. 

In  general,  when f is a mapp ing  f rom a set A into a set B, then f develops 

canonical ly to a mapp ing  f rom 2 a into 2 B and we use the same letter for  this 

mapping .  So we have for  I c M 

T(I )  = {T(i):  i e I }  

and for  9~ c 2 ~ 
T(9~) = { T(I):  I e 9~}. 

LEMMA 1.1. T( 9.[r,m) = 92, m i f f  r = m(2). 

PROOF. Suppose 1 = { i l , . . . , i , } e  9~,,,, with il < "" < iF, so i v + iv+l - 1(2) for  

v = 1 , . . . , r -  1. We have trivially T(iv) + T(iv+l) = i v + iv+ 1 + 2  = 1(2) for  

v = 1, ..., r - 2 and if i, < m, then also for  v = r - 1, proving T(I)  e 9~r. m in this 

case. When  i, = m, then T(I)  e 9~,.m iff T(m)  + T( i l )  - 1(2). N o w  T ( m )  + T( i l )  

= il + 2 = i1(2) and it = l (2 ) i f f i ,  = r(2). This shows T(9~,.m) C ~ , ,mi f f r  --= m(2). 

F r o m  T being one-to-one on the finite set 2 u we obtain T(9~,.m) = 9~,.,,. [ ]  

To  N c M,  9~ c 2 u we define 

9 t [ N ]  = {I gt: I n N  = 

~ < n >  = { U  c M :  U A N  = ~ ,  U u n ~ 9 ~ } .  

When  N = {n}, we write 9~[n], ~ < n >  instead of  9~[{n}], 9~<{n}>. 

Then 

(1.6) m = re[n] w {U u {n}: U~ 9~<n>}. 

(Here  .~ means :  union of  disjoint sets). 

The following l emma is plain:  

LEMMA 1.2 

T(9~[N])  = 

T(~<N>)  = 

PROOF. T(92[N]) = 

(T(9~))[T(N)] ,  

(T(92)) < T(N)>. 

T({I  eg~: I C~N = ~ } )  

{Ye T ( ~ ) :  T -1 (J)  C~N = ~ }  

{3* e T(9~): d n T ( N )  = ~5} 

(T(9~))[T(N)] .  
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The second equation follows analogously. [~ 

We have from Definition 1.1 

(1.8) ~ga,,m[m] 9.1,.~- i 
[ . { T - ~ ( 1 ) :  I ~9 .1 , . , , [ I ] }  = 9.I, , _  I 

and we want to obtain a similar result when n ~ 1, m in 9.I,,m[n]. 

DEFINmON 1.2. When m > 2, we define a mapp ing  42, of  M onto M \ {m, m -  1} 

]or every n ~ M :  

i f o r j  = 1,m 

(al(J) --- - 1 f o r j  = 2 , 3 , . . , , m -  1 

= ~ m - 2 f o r j = l , m  

(am(J) ( j - 1  f o r j  2 , . . . , m - 1  

I j f o r j  = 1 , . . . , n -  1 

(a,(j) = J n  - 1 for j = n (n = 2, . - . ,m -- 1). 

L j - 2  f o r j = n + l , . . . , m  

LEPTA 1.3. When m = r(2) or 1 < n < m then 

= 

PROOF. We first assume 1 < n < m. Suppose I e 9.I,,.,[n]. 

We observe that # (a.(I) = r: Now (a.(a) # (a.(b) for a # b, iff {a,b} ~ {n - 1, 

n, n + 1}, By hypothesis, n r I, so in order to show that :~ (a.(I) = r, it suffices to 

show that {n - 1, n + 1} ~ I. But if n - 1, n + i were in ! they would be successive 

elements with (n - 1) + (n + 1) = 0(2) contradicting that I is alternating. 

When u e M \ { n } ,  then either (a.(u)= u or (a.(u)= u - 2 .  Therefore, when u, 

v ~ M\ {n}, then u + v =-- (an(u) + (an(v) (2). This proves (an(l) ~ ~r,m-2 and 

therefore (a,(9J,,m[n]) ~ 9~,,~_ 2. 

To prove the reverse inclusion, we define a mapping ~ .  from M\ {m - 1, m} 

onto M/{n,  n + 1} by 

j for i < n 

~n(J) = j + 2 f o r j > n  

When J ~  9.I,,,._2, then obviously ~k.(J)~ 9/,.,.[n] and (a . (~ . (J ) )=J .  So 
= 
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Now we assume m - r(2) and n = 1. We have 4,xo T -1 

4,~(9/,.,,[I]) 
= 4 , , ( T - X ( 9 / r . m ) [ T - ' ( 2 ) ] )  

= 4 , , ( r - ~ ( 9 / . , . [ 2 ] ) )  

= 4 , ~ ( 9 / , , . [ 2 ] )  

~-  9 / r  ,r~-- 2" 

4,m(9/rm[m]) = 9/,.m-2 follows analogously. [] 

The following example gives 9/37[ 2] and 4'2(9/3,7[2]) : 

~2~ SO 

(Lemma 1.1) 

(Lemma 1.2) 

9/3,7[2] 4,2(9/3,7 [2]) 

5 
4 5 

1 2 3  
1 2  
1 
1 2 3  
1 2  
1 

1 4 5 
1 4 7 
1 6 7  

3 4 5  
3 4  
3 

7 5 
6 7  4 5  

5 6 7  3 4 5  
4 5 6  2 3 4  
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1 2  

7 

7 2 
7 2 

4 5  
4 7 

6 7  

4 5 
4 7 

6 7 

(9/3,7(1)) [2] = ( 9/3,7<3))[2] 

2 3  
2 5 
2 

4 5  
4 

Example: 

9/3,7<1> 9/3,7<3> 

To every element of 9/3,712] its image under 4,2 is in the same line. Observe that 

4,2 is not one-to-one. 

LEMMA 1.4. W h e n l < n < m t h e n  

( 9/,,m<n - 1>) [n]  = ( 9/,.m<n + 1>) [n] .  

PRoov. When Ue(9/rm<n-l>) [n], then n - l ,  n q~U and U u { n - 1 }  

e 9/,,,. Therefore n + 1 e U is impossible, for otherwise n - 1 and n + 1 would 

be subsequent elements of U u {n - 1} and (n - 1) + (n + 1) = 0(2). This is a 

contradiction to U u { n  - 1} e 9/,,,,. From n + 1 r U we obtain U u { n  + 1} 

e 9/, ,,, too i.e. U e ( 9/, ,,<n + 1>) [n]. The inverse relation follows analogously. [] 
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COROLLARY. When  m > 3 and r - m(2), then 

(1.7) ( 9.I,,m(T- l(n)>) In] = ( 9.I,,m(T(n)> ) In] f o r  every n ~ M .  

Only the cases n = 1 and n = rn are not covered by the previous lemma. 

PROOF. ( ~,,m< T-  l(n)>) In] 

= ((r"-2(gL,~))<r-l(n)>) In] (Lemma 1.1) 

= ((T"-2(92[,,,)) <T"-2(1)>) [T"-2(2)] (1.5) 

= (T"-2(9.It,re<l>)) [T"-2(2)] (Lemma 1.2) 

= T"-=((%,m<l>) [21) (Lemma 1.2) 

= T"-a((9.Ir,,~<3>) [21) (Lemma 1.4) 

= (T"-2(N,,m<3))) [T"-2(2)1 (Lemma 1.2) 

= ((r"-2((91,,~))<T"-2(3)>) [T'-2(2)1 (Lemma 1.2) 

= ((T"-2(9.I,,m) ) (T(n)>)  [n] (1.5) 

= ( 9 I , , m < r ( n ) > )  In]. (Lemma 1.1) [] 

The condition r = rn(2) in the corollary is necessary. For example 

( 9~ 3,6(6>) [1] = {{2, 3}, {2, 5}, {4, 5}} 

(913.6(2>)[11 = {{3,4},{3,6},{5,6}}. 

The following lemma is obtained analogously to Lemma 1.4 but a little more 

complicated. 

LE~4MA 1.5. When  m > 4, r > 2 and l <_ n < m - 3, then 

(%,mK{n,n  + 1}>)In -4- 2] = ( 9.Ir,m<{n + 2,n  + 3}>) In + 1] 

PROOF. Suppose V ~ ( 9.I,,,,<{n, n + 1}>) In + 2]. Then {n, n + 1, n + 2} t3 V 

= ~  and V w { n , n  + 1}e 9~,.,,. 

The assumption n + 3 e V gives us again (as in the proof of Lemma 1.4) a 

contradiction to V w {n, n + 1} z 9~,.z. Therefore V w {n + 2, n + 3} e 9~, m, 

showing V z ( 9.I,,,,<{n + 2, n + 3}>) [n + 11. The inverse relation needs no new 

argument. [] 

The following corollary follows by a similar calculation as the corollary to 

Lemma 1.4. 

COROLLARY. When m > 4, r __> 2, m = r(2) then we have 
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(1.8) 
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( 9.I,,,.({n, T(n)})) [TZ(n)] = (9A.,m({T2(n), T3(n)})) IT(n)].  

for every neM.  [] 

When I c M, then min I is the smallest element of I. Then we define 

a t , m =  ~ ~r ,m,  

(1.9) b,,,, = # { Ie  9~r.m: rain I - 1(2)}, 

Cr.m = # { I  e 9At m : ra in  I --  0 ( 2 ) } .  

LEMMA 1.6. Cr,m = br.,,-lfor m > 1. 

PROOF. T - l ( { I e  9At.m: min I = 0(2)}) = {J~  9At,m-t: rain I = 1(2)}, therefore 

Cr,m = ~ ( T - l ( { I ~  9At,m: min I -- 0(2)})) 

= # ( { J  E 9At,m-~ : m i n  I - -  1 ( 2 ) } )  

= b r , m _ l . [ ~  

LEMMA 1.7. b r , , , = b , , , , _ 2 + b , _ l , , _ l f o r 2 < - r < m - 2 .  

PROOF. b,m = # {I~ ~ , , m : m i n I =  1} 

+ # {Ie 9A,,,,:minl>_ 3, m i n i  -- 1(2)} 

= ~ { V = M : I ( ~ V ,  V U{1}~ 9A~,,,} 

+ ~ T-2({I~ 9~,,m: m i n i  > 3, m i n i  -- 1(2)}) 

= # { V e 9At_ 1,m : min V - 0(2)} 

+ # { J s  9A,,m_2:min J - -  1(2)}. 

:-  Cr_l ,  m + br,m-2 

= b r - l , m -  1 -t-br.m_2. (Lemma 1.6) [ ]  

LEMMA 1.8. 

equal to x). 

PROOF. 

a , , , = ( m - [ � 8 9  + l ) ] )  + ( m - [ � 8 9  + 2)] ) .  

' r r 

= O for u < v and Ix] denotes the greatest integer less than or 

We show by induction: 

m - [-�89 -- r N 1)]) 

(1.10) b,.m = �9 
r 

(1.10) holds for r = 1, r = m - 1, r = m. Using Lemma 1.7 and the induction 
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hypothesis we obtain (1.10) and the lemma follows then from (1.10), Lemma 1.6 

and a,,m = b,.m + C,.m. [] 

COROLLARY. 

A,(m ' 1 )  1 [ ( m - [ � 8 9  ( m - [ � 8 9  
' " = m-~ r + r " 

LEMMA 1.9. 

(1 + 1/n~ s l+s /n  
\l---Z-~/n/ < 1 s/-----~, for 2 <_s<_n. 

PROOF. When s = 1, equality holds. Now suppose s > 1 and we have 

s-1 1 +  s - 1  
(1 + 1In t <-_ --n 
\ 1  - 1 / n /  1 s - 1 

n 

by induction hypothesis. Then 

1/nJ 

Define 

(1.11) 

< s_,) (11) (1 
s s - 1  s 

1 + - - + - -  l + - -  
n n 2 n 

< - -  
s s - 1  s 

1 - - - + - -  1 - - -  
n n 2 n 

C,(m)= ,~m ' 
k y. . . .~_. . .J 

II1 

[] 

LEMMA 1.10. 

PROOF. 

When 2 < r < m, m = r(2), then C,(m) < C,(m + 2). 

We have from r = m(2), the corollary to Lemma 1.8 and (1.11) 

m r /. 

A straightforward but somewhat tedious calculation gives 

C , ( m + 2 ) - C , ( m ) =  1 ,-2 [ m + r  
2"-1r! v=lIl (m + ," - 2v) ((m u  ~ 

m - r + 2 }  
m ' -  r 
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So all we have to show, that {... } is positive. This follows from Lemma 1.9 with 

n = m + l a n d s = r - 1 .  [] 

We are now prepared to prove our theorem. However for a later application 

we first state the following 

I.EMMA 1.11. When 2 < r < m, rn = r(2), then 

1 
C,(m) < A,(1,..., 1,2). [] 

(m + 3)" ~ . j "V-"--" 

r n + l  

We omit the proof, which is a straightforward but tedious calculation. 

PROOf OF THE THEOgnM. When 93[ c 2 M, x e R m we define the polynomial 

P( 9~,. ) by 

(1.12) P( 9.I ,x)-  • [,I~1 x,: I t  9~ }. 

(As usual the product over the empty index set is 1). When 9.I = ~ ~v~, then 

P(9~ ,x )  = P(~3,x)  + P(~ , x ) .  Therefore by (1.6) 

P( 9j, x) = P( 9~[i], x) + xf(9~(i) ,x) .  

For the alternating polynomial we obtain Ar(xl ,  . . . , x , , ) =  P(9.[,.m,x). 

When r = 1, then our theorem is trivial, for P(9~ . . . .  x) = 1 on S. When r = 2, 

then 

and this product is maximal on S iff 

(1.13) 2~ x~ = ]~ x i. 
i~0(2)  j m l ( 2 )  

So xl  . . . . .  x,, = 1/m is a solution of (1.13) iff m = 0(2). When r ~ m(2), then 

(1/(m-1) ,  ..., 1 / ( m - 1 ) , 0 ) i s  a boundary point of S which solves (1.13). Therefore 

(1 1) (1 10) 
A2 "", </~2,, = A 2  m -  1' ' m -  1' 

k......,~...,v j k ..,y_ J 

m m 

= A2 - 1' ' m - - 1  =B2 ,m- l .  
k 1 . . y  

m - 1  
This proves the case r = 2 of our theorem. 

Now suppose r > 3. We build the Lagrange-function 
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(1.14) L(x, ,~.) = P( 9~r,m, X) "t- 2(1 -- (e, x)). 

(Here ( e , x )  is the scalar product of e = (1,..., 1) and x). 

Using (1.6) we have 

23 

For a 

(1.15) 

Ox,------T P( 9.It,=, X) = P( 9.I,.=@ -- 1), x) 

= P(( ~r.m(n -- 1))  In ] ,  X) + x,P( 9 . ~ , , = ( { n  - -  1,n}),x),  

P( 9~, =,x) = P( ~,,=(n + l>,x) 
~Xn + I 

= e( (  ~I r, =(n + 1))  [n ] ,x )  + xnP( 9,I,.=({n + 1, n} ) ,x ) .  

* ~.*) of L we obtain stationary point (xT,...,Xm, 

~ ,  P(9.I,,=,x.) = 2* for all M. n 

The combinatorial preparations serve now to handle the equations (1.15). When 

1 < n < m we get from Lemma 1.4 

x ' P (  ~ , , = < { n  - 1, n}>, x*) = x 'e(  ~,,=<{n + 1, n}>, x*). 

When x* is an interior point of S, we have x, >0.  So we obtain for every n with 

l < n < m  

(1.16) P(9.I,,=({1,2}), x*) = P( 9.I,,=({n, n + 1}),x*). 

We have from (1.6) for 2 _< n < m -  2 again 

e ( 9 ~ ,  = ( { n  - 1 . n } ) . x * )  

= e ( ( 9 / , . { ( n  - 1, n}5)[n + 1],x*) + x*+ ,P(91 ,=({n  - 1 , n , n  + 1}5,x*), 

e( 9.I,.,.< {n + 1,n + 2} > ,x*)  

= P(( 9.1,.,,({n + 1,n + 2}))[n],x*) + x 'P (  ~,.m({n,n + 1,n + 2}),x* ). 

This gives us together with (1.16) and Lemma 1.5 

(1.17) x'P( 9.1,.m({n, n + 1, n + 2}), x*) = x*+, P( 92[,,= ({n - 1, n, n + 1}5, x* ) .  

Now we assume r = 3. Then 9.I3,=({n,T(n),T2(n)})=~for every n e M ,  so 

P( 9~3,m({n, T(n), T2(n)})) 1. From (1.17) therefore it follows x* * = . . .  ~ X m _ l .  

When m odd, then (1.8) gives us x* x2* * * . . . . . .  X m - 1  = Xm = 1 / m .  

Returning to the general case we obtain from (1.17) for r > 3, 2 _< n - m - 3  

with n + 1 instead of n 
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(1.18) Xn+lP(9~r'm({rl"l- l 'n-b 2'n"k 3}~'x*) 

= n + 1 , n  + 2 } ) , x * ) .  

It follows f rom (1.17) and (1.18) 

* * x P( 9.Ir,m({n 1, n, n + 1}), x*) * * X n + 2 X n +  - -  = X n + 2 X n  P( gl,,m({n,n + 1,n + 2}) ,x* )  

= X. Xn+l P( 9.I.,m({n + 1, n + 2 , n  + 3}) ,x*) .  

Therefore ,  when x* is an interior  point  of  S we obtain 

(1.19) X,+z* P(gl , ,m({n - 1,n,n + 1}), x*) = x*P(gl, r, ,({n+l,n+2,n+3}),x*). 
Now suppose r = 4. Then 

9.[4.m({n - 1,n,n + 1}) = {i~ M: i =- n(2), i ~  n}. 

Therefore  (1.19) becomes 

X*+z Z{x*:  i = n(2), i ~ n} = x*  Z{x*: i --- n(2), i ~ n + 2} or equivalently 

x . ) ( x . + 2  + x D  (x.* * (x.+2 n(2), i ~ n, n + 2}). - = - x . + 2 )  ( Z { x * :  i - 

* then at least one x* i =  n (2 )mus t  be negative. Therefore  So, when x*+2 ~ Xn, 
we have reached the conclusion that  x ,  = X*+z or more general x~' = x~when  

2 < i, j < m - 1 and when i,j are both  even or both odd. Now suppose m even. 

Then r ---- m(2) and so (1.8) gives us x*  = x* and Xm_ 2 .  : Xm,* too. With a = x~, 

b = x* we have x* -- (a, b, a, ..., b) where a + b = 2/m.  

In general,  when r is even, then ~ {ieI:  i odd} = ~ {ieI:  i even} for  every 

I ~ 9A,.m. Therefore  we have 

I-I x*=ar/2"b'/2 < (ar/Zkbr/2) 2 
i e l  = 2 

with equali ty iff a = b = 1/m. 

We put  the results together :  

Suppose r = 3 and m odd .When  (x*, 2*) is a stationary point  of  the Lagrange- 

funct ion L and x* is an interior point  of  S, then x* = (1/m,  ..., 1/m). 

Suppose r = 4, m even and (x*,x*, " " , X m _ l , X m , *  * 2*) = (X*,2*) is a stationary 

point  o f  L with x* in the inter ior  of  S. Then  x* = x~ = "'" = Xm-l,* X2* = X4* 
* Fur thermore ,  when y is a point  of  the interior of  S of  the form . . .  ~ X m ,  

y = (a, b , . . . ,  a, b) with a ~ 1/m, then A,(y) < A,(1 /m, . . . ,  1/m). 
Now we prove that  in these cases (i.e. for  r = 3, 4, r = m(2)) 

Ar(Ux,..., Urn) < At(1/m,..., 1/m) 
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holds when u =(Ul,'",Um) is a boundary  point  of  S. We apply induct ion on 

m -  r. Indeed,  when m = r, this inequality is just the ari thmetic-geometric 

mean inequali ty for  r --- m = 3, 4. Now suppose m - r > 0. To  every j r M we 

define a mapping f j  of  •" into R ~-2 using definition 1.2 as follows: To  

x = (xl ,  . . . ,x=) e ~m, k e  {1,2, "",  m} 

we define 

Yk = E { x , :  p~M, c~j(p) = k} 

and fj(x) = (Yl,'", Ym-2)" So for example 

.f3(x) ~-- (X1,X 2 -']- X 3 "-[- X4, X5, "" ,Xm-2) .  

Now suppose u = (u~, ...,ui_ ~, O, uj+l, ...,um)~S is a boundary  point  of  S, so 

Ar(u)=P(9~r,m[j],u ) and also suppose that  I ~ 9A,,,,[j] and v =(Vl,'",Vm-2) 

= f j (u) .  

When c and d are different elements of  M k{J} with qSj(c) = qSj(d), then {c, d} 

= {T-I ( j ) ,  TO) ). We have {T-I(j),  T(j)} ~ I for  every I ~  9A,,,,[j], for T - I ( j ) ,  

T(j) would be subsequent elements of  ! of  the same parity. Therefore  ~bj is one- 

to-one on every I ~ 9Ar,m[j], hence v6,(p) = Up for  every p ~ I and so trivially 

~ U p =  ~ Vk" 
pe l ke#p~(I) 

We define a mapping g on {I~  ~.I,,,.[j]: T-I( j )~I}  by g ( l ) = ( I i { T - l ( j ) } )  

w iT(j)}.  Then g(I) ~ 9.I~,m[J'l, too and g maps {I e ~,,.I-j-I : T -  l(j) ~ I} one-to-one 

onto {K e 9~,,,.[j] : T(j)  ~ K}. This gives us 

I-[ up+ I-I u~=(Ur-:(j)+Ur(j)) [I{ut : t~I ,  t # T - l ( J ) )  = I~ Vk. 
pc I s~O(I) ke (aj(l) 

So finally using Lemma 1.3 we obtain 

P(9~r,,,[j],u) = ~{  ~ Vk:16 9..[r,m[j]} 
k~ , j(t) 

% 

= P(9A,,m-2,V) = A,,,,_2(Vl, "",Vm--2). 

Trivially vl + --. + v,,-2 = 1, v~ > 0 for  i = 1, ..., m - 2. Therefore  the induction 

hypothesis leads to 

(m 1 _1 ) = C~(m _ 2). Arrn_2(vl , . . . ,Vm_2) <-- A, - 2' ' m  2 
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From Lemma 1.10 we have therefore 

Aem(ul, '" ,  urn) <= C,(m - 2) < Ce(m ) for every point on the boundary of S. 

Therefore fi,,m is not attained at the boundary of S and is consequently attained 

at interior points x* of S only, for which (x*, 2*) is a stationary point of L. This 

proves our theorem in the case r - m(2). 

Now suppose r ~ m(2), r = 3 or r = 4 and ( x l , ' " , x m ) � 9  S. Then 

A,(xl,  "",Xm) = A,(Xl, "",x,.,O) = P( ~e,m + x,(Xa, "", xm, O)) 

= P( ~e,m+,[m + 1],(xl, "",Xm, O)) = P( ~,,m-i,fm+l(Xx, "",Xm, O)) 

= P( ~r.m,(X1 Av Xm, X2, " " , X m - 1 )  ) = Ae(x 1 + Xm, X2, "",Xm-1) 

SO 

(1.20) At(x1, "",Xm) = Ar(X 1 "t- Xm, X2, "",Xm_l) 5~ fie,m-l" 

This shows fie,m < fie,m-1" The inverse relation is trivial. We have 

1 1 

t _ _ 1  k ~ )  'V" -v" 
m + l  m - 1  

and with x = (1/m,. . . ,  1/m) the calculation above gives us therefore 

A'(I '""I)  = P (gJ"m+i'fm ( l '" 'm ]] 

( (1 1 
= P 9~r"n-l' m' ' m' 

k ) y .  

m - 1  

( (1 1)) 
< P ~[e,m, m - 1' ' rn - 1 = fie,m-1 = fie.m" 

k_.._ J 
m - 1  

This completes the proof of the theorem. [] 

COROLLARY TO THEOREM 1.1 When r �9 {2, 3,4}, then 

(1.21) Ae(x,, ..., xm) < A,0Z, ...,~Z) 

for all (Xl,'",Xm) with x~>O for i =  1, . . . ,m i f f  r -  m(2). 

This follows immediately from theorem 1.1(i) and from A, being homogenous 

of degree r. 

For the alternating polynomial (1.2) one may also use the arithmetic-geometric 
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mean inequality separately for every term. This leads for x ---(xl, " ' , x m ) >  0 to 

(1.22) A , (x , , . - . ,  xm) _-__ I ;  I e ~,,,~ . 
i 

However, the inequality (1.21) gives in general a sharper estimate. For example 

when r = 3, m = 5, x~ = i for i =  1, . . . ,5 then A,(1,2,-- . ,5)= 120, the right side 

of (1.21) is 135, the right side of (1.22) is 155. 

o 

DEFINITION 2.1. 

of d 

An application to a combinatorial problem 

When d = (d j , . . . ,  dr) is a binary number, then a subsequence 

= ( d , , . . . ,  d,,) 

is called alternating, if di~ + di, § = 1 for v = 1,..., r - 1. Then 

at(d) = ~- {6 = (dt~, "", dr1): fi ~alternating). 

When D t is the set of all binary numbers with t digits we define 

~r., = max {a,(d): d ~ Dr}. 

When d = (0,1,. . .)  ~ D t is the binary number which forms an alternating sequence 

itself and which has 0 as its first digit, then we conjecture: 

(2.1) c~,,: = a,(d) for every r = 1,..., t. 

This conjecture is near at hand. However, we were not able to solve it in general. 

We pointed out in [2], that (2.1) has a graph theoretical meaning, too. The 

following definitions 2.2,3 and Lemma 2.1 which prepare theorem 2.1 are essential- 

ly the same as in [2]. 

DEFINITION 2.2. Suppose M(t) = {1,2, . . . , t ) ,  d~Dt, p, cleM(t),  p < q. Then 

p,q are d-equivalent iff dj, = dp+ 1 . . . . .  dq. The equivalence classes are the 

blocks of d. When 8 =(di~,..., di,), 8" = (di l , . . . ,dj , )  are subsequences of d, then 

8, 6" are equivalent, iff r = s and iv,jr are d-equivalent for v = 1,..., r. 

It is plain that, when p, q are not d-equivalent with p < q and when q, q* are 

d-equivalent, then p < q*, too. Therefore the natural order devolves upon blocks 

of d. 

DEFINITION 2.3. Suppose d ~Dt has the sequence of blocks 

(N1, . . . ,Nm),N 1 < ... < Nm 
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a) When # N~ = n t, then 

F. HERING 

v(d) = (nl, "", n,.) 

Israel J. Math., 

is the partit ion of  d. 

b) fd is the mapping of m( t )  = {1,-.., t} onto M = {1, ..., m} defined by 

i ~ N f a ( i  ) . 

Obviously the partition v(d) of d is a partition of t, i.e. is an ordered sequence of 

positive integers nl with n~ + -.- + n,, = t. We write 0' = 1,1' = 0 and to d = 

(d , . - . ,  din)then d ' =  (d~, ..., d~,).When v is any partition of t, then there exist exactly 

two binary numbers d, d* ~ Dt with v(d) = v(d*) = v and here d* = d'. We have 

a,(d) = ar(d' ) for every d~ D r So when ~r.t = a,(d), then ~ , , =  a,(d'), too. 

LEMMA 2.1. For every d ~  D t with v (d )=  (n l , " ' , nm)  we have 

a,(d) = A,(n t , ' " ,  nm) 

PROOF. When 6 =(d j~ , . . . ,d j , ) i s  a subsequence of d, then the number of 

sequences equivalent with 6 is 

nf  .~(jl ) . . . . .  n f  a(j ). 

Now 6 is alternating iff fd(j,) +f,~(Jv+l) =- 1(2) for v = 1, . . . , r - l ,  i.e. iff {fd(JO, 

"",fd(J~)} ~ 9~,,m" This gives us 

{6  = (d i , , ""  , d i ) : 6 alternating} 

= Z { v=lh nfa(J,):{fd(Jl), "", {fd(Jr)} ~ 9~r"} 

= A, (nz , " . ,n , , ) .  [] 

We use Theorem 1.1 for proving the conjecture (2.1) when r = 1,2,3,4. 

THEOREM. 2.1. When r < 4, then 

ct, , = a,(d). 

When r = 3,4, then ~,.t is attained only for  d or d' i f f  r = t(2). 

PROOF. Suppose d~ D t has the partition v (d )=  (n 1, ..., n,,). We have to regard 

several cases separately. 

1) r = 1. This case follows from al(d)  = t for every d~Dt .  

2) r = 2 .  It is 
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~ �9 = max  {u �9 v: u, v positive integers, u + v = t}. 

With 

we have 

and therefore 

u(d) = ~,{ni:i odd} 

g(d) = ~ { n j  : j  even} 

a2(d )=u(d)"  g(d) 

~ �9 o 

proving the case r = 2. 

3) r = 3,4, t - r(2). Then  by the corol lary to Theorem 1.1: 

a,(d) = A, (n l , ' " ,  n m ) =  A,(n l , . . . ,  n , ~ , ~  

t - m  

-< A , ( ~  = a,(d). 

t 

Here  equali ty holds iff m = t, equivalently iff nl . . . . .  n m = 1 i.e., iff d = d or  

d = d ' .  

4) r = 3, 4, r ~ t(2), m =< t - 3. Then 

a,(d) = A, (n l , . . . ,  nm): A,(nl , . . . ,  nm, ~ 

t - m - 3  

t 
< A ,  t 

- -  3 '  

= t'C,(t - 3) 

< A , ( ~ 2 )  

t - 1  

= A , ~ )  

t 

= a,(d). 

\ 
' t  3) (corollary to Theorem 1.1) 

(1.11) 

( L e m m a  1.11) 

(1.20) 



30 F. HERING Israel J. Math., 

5) r = 3, 4, r ~ t(2), m = t -- 2. Here  r ~ m(2) and therefore with (1.20) 

at(d) = Ar(nl,  ..., n,,) = A,(nl +nm, n2, ..., nm_l). 

There  exists a dEDm_l with v(d)=(n l  +nm, n2,'",nm-1), so a,(d)=a,(d).  

F r o m  par t  4 of  this p r o o f  we obta in  a,(d) < a,(d), showing 

a,(d) < a,(d). 

6) r = 3, 4, r # t(2), m = t - 1. Here  exists exactly one j e M with nj = 2 and 

it is n, = 1 for  every i e M / { j } ,  so 

ar(d ) = A,(1,- . . ,  2, ..., 1). 

J 

F r o m  r - m(2), L e m m a  1.1 and (1.12) immedia te ly  follows 

A,(1, ..., 2 , . . . ,  1) = A,(2, 1, . . . ,  1). 

F r o m  (1.20) we obtain  

At(2, 1, . . . ,  1) = A,(1, ..., 1) = a,(d), 

t - 1  t 

so together  

comple t ing  the proof .  [ ]  

at(d) = a,( d), 

The conjecture 2.1 may  also be verified directly when m -  r = 0 ,1 ,2 .  

Addendum. After  this pape r  was sent for  publ ica t ion  the au thor  p roved  Theo-  

rem 1.1 wi thout  the restriction r < 4 and He iko  H a r b o r t h  p roved  the conjecture 

2.1. 
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